Back to Search
Start Over
Bismuth⋯π arene versus bismuth⋯halide coordination in heterocyclic diorganobismuth(<scp>iii</scp>) compounds with transannular N→Bi interaction
- Source :
- Dalton Transactions. 46:3953-3962
- Publication Year :
- 2017
- Publisher :
- Royal Society of Chemistry (RSC), 2017.
-
Abstract
- New diorganobismuth(III) bromides of type [RN(CH2C6H4)2]BiBr [R = C6H5CH2 (1), C6H5CH2CH2 (2), and CH3OCH2CH2 (3)], based on the heterocyclic butterfly-like tetrahydro-dibenzo[c,f][1,5]azabismocine framework, were prepared starting from the corresponding RN(CH2C6H4Br-2)2 in a succession of reactions including ortho-lithiation and treatment of the dilithio derivative with BiBr3 in a 1 : 1 molar ratio. Further exchange reactions between bromides and appropriate metal halides or ammonium fluoride resulted in the formation of [RN(CH2C6H4)2]BiX [X = Cl and I for R = C6H5CH2 (4 and 5) and C6H5CH2CH2 (6 and 7) and X = F (8), Cl (9), and I (10) for R = CH3OCH2CH2]. All ten compounds were structurally characterized in solution by NMR and in the solid state by single-crystal X-ray diffraction. Strong transannular N→Bi interactions were observed in all the investigated diorganobismuth(III) halides, thus giving rise to hypervalent 10–Bi–4 species in 1, 2, 4–7 and 12–Bi–5 species in 3, 8–10, where the oxygen atom in the pendant arm is intramolecularly coordinated to bismuth. The molecules are associated in dimeric units by strong Bi⋯π arene interactions in 3, 4, and 10 (approx. 3.50 A) and by Bi⋯X interactions in 1, 5, and 7. Bromide 1, chloride 4, and iodide 5 are isostructural, but stronger polarization of the Bi–Cl bond favors Bi⋯π arene interaction in 4 over Bi⋯halide interactions, as observed in 1 and 5. In the isostructural series [RN(CH2C6H4)2]BiX (R = CH3OCH2CH2), Bi⋯oxygen interactions compensate the electron deficiency at bismuth in fluoride 8 and chloride 9, whereas the coordination sphere of bismuth is completed by a combination of Bi⋯π arene and Bi⋯halide interactions in bromide 3 and only by Bi⋯π arene interactions in iodide 10. Moreover, weak H⋯π arene and H⋯X intermolecular interactions, mainly of dispersion type, contribute to supramolecular networks in all three series of compounds.
- Subjects :
- chemistry.chemical_classification
Coordination sphere
010405 organic chemistry
Chemistry
Stereochemistry
Iodide
Supramolecular chemistry
chemistry.chemical_element
Electron deficiency
010402 general chemistry
01 natural sciences
Medicinal chemistry
0104 chemical sciences
Bismuth
Inorganic Chemistry
chemistry.chemical_compound
Metal halides
Bromide
Isostructural
Subjects
Details
- ISSN :
- 14779234 and 14779226
- Volume :
- 46
- Database :
- OpenAIRE
- Journal :
- Dalton Transactions
- Accession number :
- edsair.doi.dedup.....b04d7331434ffee6d2882b9f3be6d4ba
- Full Text :
- https://doi.org/10.1039/c7dt00188f