Back to Search Start Over

Massive galaxy clusters like 'El Gordo' hint at primordial quantum diffusion

Authors :
Jose María Ezquiaga
Juan García-Bellido
Vincent Vennin
Niels Bohr Institute [Copenhagen] (NBI)
Faculty of Science [Copenhagen]
University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH)
Kavli Institute for Cosmological Physics [Chicago] (KICP)
University of Chicago
Enrico Fermi Institute
Instituto de Física Teórica UAM/CSIC (IFT)
Universidad Autónoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)
Cosmologie et Gravitation
Laboratoire de physique de l'ENS - ENS Paris (LPENS)
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
AstroParticule et Cosmologie (APC (UMR_7164))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
European Project: 847523,INTERACTIONS
Source :
Physical Review Letters, Physical Review Letters, 2023, 130 (12), pp.121003. ⟨10.1103/PhysRevLett.130.121003⟩
Publication Year :
2022

Abstract

It is generally assumed within the standard cosmological model that initial density perturbations are Gaussian at all scales. However, primordial quantum diffusion unavoidably generates non-Gaussian, exponential tails in the distribution of inflationary perturbations. These exponential tails have direct consequences for the formation of collapsed structures in the universe, as has been studied in the context of primordial black holes. We show that these tails also affect the very-large-scale structures, making heavy clusters like "El Gordo", or large voids like the one associated with the cosmic microwave background cold spot, more probable. We compute the halo mass function and cluster abundance as a function of redshift in the presence of exponential tails. We find that quantum diffusion generically enlarges the number of heavy clusters and depletes subhalos, an effect that cannot be captured by the famed $f_{\mathrm{NL}}$ corrections. These late-universe signatures could thus be fingerprints of quantum dynamics during inflation that should be incorporated in $N$-body simulations and checked against astrophysical data.<br />5 pages without appendices (total 8 pages), 3 figures, matches published version in Phys. Rev. Letters

Details

Language :
English
ISSN :
00319007 and 10797114
Database :
OpenAIRE
Journal :
Physical Review Letters, Physical Review Letters, 2023, 130 (12), pp.121003. ⟨10.1103/PhysRevLett.130.121003⟩
Accession number :
edsair.doi.dedup.....b095f53d90de7558da2f21385a7c1256
Full Text :
https://doi.org/10.1103/PhysRevLett.130.121003⟩