Back to Search
Start Over
Asiatic Acid Interferes with Invasion and Proliferation of Breast Cancer Cells by Inhibiting WAVE3 Activation through PI3K/AKT Signaling Pathway
- Source :
- BioMed Research International, Vol 2020 (2020), BioMed Research International
- Publication Year :
- 2020
- Publisher :
- Hindawi Limited, 2020.
-
Abstract
- Objective. To explore the ability of asiatic acid to interfere with the invasion and proliferation of breast cancer cells by inhibiting WAVE3 expression and activation through the PI3K/AKT signaling pathway. Methods. The MDA-MB-231 cells with strong invasiveness were screened by transwell assay, and plasmids with high expression of WAVE3 were constructed for transfection. The transfection effect and protein expression level of plasmids were verified by PCR and WB. The effects of asiatic acid on cell proliferation and invasion were investigated by flow cytometry. The xenografted tumor models in nude mice were established to study the antitumor activity of asiatic acid. Results. Asiatic acid significantly inhibited the activity of MDA-MB-231 cells, and the expression level of WAVE3 increased significantly in the tissue of ductal carcinoma in situ and was lower than that in the metastasis group. After plasmid transfection, the mRNA and protein expression of WAVE3 increased significantly in the cells. Asiatic acid at different concentrations had an impact on cell apoptosis and invasion and could significantly inhibit the expression of WAVE3, P53, p-PI3K, p-AKT, and other proteins. The T/C(%) of asiatic acid (50 mg/kg) for MDA-MB-231(F10) xenografted tumor in nude mice was 46.33%, with a tumor inhibition rate of 59.55%. Asiatic acid could significantly inhibit the growth of MDA-MB-231 (F10) xenografted tumors in nude mice (p<0.05). Conclusions. Asiatic acid interferes with the ability of breast cancer cells to invade and proliferate by inhibiting WAVE3 expression and activation and the mechanism of action may be related to the PI3K/AKT signaling pathway.
- Subjects :
- Article Subject
Breast Neoplasms
General Biochemistry, Genetics and Molecular Biology
Flow cytometry
Metastasis
Mice
Phosphatidylinositol 3-Kinases
Cell Line, Tumor
medicine
Animals
Humans
Neoplasm Invasiveness
PI3K/AKT/mTOR pathway
Cell Proliferation
General Immunology and Microbiology
medicine.diagnostic_test
Akt/PKB signaling pathway
Cell growth
Chemistry
General Medicine
Transfection
medicine.disease
Xenograft Model Antitumor Assays
Wiskott-Aldrich Syndrome Protein Family
Gene Expression Regulation, Neoplastic
Oncogene Protein v-akt
Mechanism of action
Apoptosis
Cancer research
Medicine
Female
medicine.symptom
Pentacyclic Triterpenes
Research Article
Signal Transduction
Subjects
Details
- Language :
- English
- ISSN :
- 23146141 and 23146133
- Volume :
- 2020
- Database :
- OpenAIRE
- Journal :
- BioMed Research International
- Accession number :
- edsair.doi.dedup.....b09b66880b927d36f877073756429b73