Back to Search Start Over

Prediction performance and fairness heterogeneity in cardiovascular risk models

Authors :
Uri Kartoun
Shaan Khurshid
Bum Chul Kwon
Aniruddh P. Patel
Puneet Batra
Anthony Philippakis
Amit V. Khera
Patrick T. Ellinor
Steven A. Lubitz
Kenney Ng
Source :
Scientific reports. 12(1)
Publication Year :
2022

Abstract

Prediction models are commonly used to estimate risk for cardiovascular diseases, to inform diagnosis and management. However, performance may vary substantially across relevant subgroups of the population. Here we investigated heterogeneity of accuracy and fairness metrics across a variety of subgroups for risk prediction of two common diseases: atrial fibrillation (AF) and atherosclerotic cardiovascular disease (ASCVD). We calculated the Cohorts for Heart and Aging in Genomic Epidemiology Atrial Fibrillation (CHARGE-AF) score for AF and the Pooled Cohort Equations (PCE) score for ASCVD in three large datasets: Explorys Life Sciences Dataset (Explorys, n = 21,809,334), Mass General Brigham (MGB, n = 520,868), and the UK Biobank (UKBB, n = 502,521). Our results demonstrate important performance heterogeneity across subpopulations defined by age, sex, and presence of preexisting disease, with fairly consistent patterns across both scores. For example, using CHARGE-AF, discrimination declined with increasing age, with a concordance index of 0.72 [95% CI 0.72–0.73] for the youngest (45–54 years) subgroup to 0.57 [0.56–0.58] for the oldest (85–90 years) subgroup in Explorys. Even though sex is not included in CHARGE-AF, the statistical parity difference (i.e., likelihood of being classified as high risk) was considerable between males and females within the 65–74 years subgroup with a value of − 0.33 [95% CI − 0.33 to − 0.33]. We also observed weak discrimination (i.e.

Details

ISSN :
20452322
Volume :
12
Issue :
1
Database :
OpenAIRE
Journal :
Scientific reports
Accession number :
edsair.doi.dedup.....b0d6a495f649d5083d3135659df47c7f