Back to Search Start Over

Probabilistic Breaking Tie: An Active Learning Strategy To Leverage Class Hierarchy For Impervious Surfaces Classification

Authors :
Thoreau, Romain
Achard, Véronique
Risser, Laurent
Berthelot, Béatrice
Briottet, Xavier
ONERA / DOTA, Université de Toulouse [Toulouse]
ONERA-PRES Université de Toulouse
Institut de Mathématiques de Toulouse UMR5219 (IMT)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
Magellium
Source :
2022 12th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2022 12th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Sep 2022, Rome, Italy. pp.1-5, ⟨10.1109/WHISPERS56178.2022.9955057⟩
Publication Year :
2022
Publisher :
IEEE, 2022.

Abstract

Urban sprawl has significantly changed the land cover of metropolis and periurban areas. In that regard, the monitoring of impervious surfaces has become crucial to mitigate their impacts on the hydrology of the watersheds and on urban micro-climates. At this end, airborne hyperspectral imaging is very well suited to map the diversity of impervious surfaces over urban areas, both in terms of scale and of discriminative power. Yet, the diversity of soil materials as well as the similarity between some artificial porous and impervious classes, is such that active learning methods are imperative to build optimal ground truths for machine learning algorithms. Besides, in the context of impervious surfaces classification, not all classes are of equal interest. In the present paper, we introduce Probabilistic Breaking Tie, a query system, built on the state-of-the-art Breaking Tie [1] heuristic, that leverages class hierarchy as a priori semantic knowledge. Our numerical experiments on the Houston University data set [2] show that our method significantly increases the pace at which active learning improves the accuracy metrics over impervious and porous classes. Code is available at https://github.com/Romain3Ch216/AL4EO.

Details

Database :
OpenAIRE
Journal :
2022 12th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS)
Accession number :
edsair.doi.dedup.....b0dbe6b2d7e74d11bb8f51effad9013a
Full Text :
https://doi.org/10.1109/whispers56178.2022.9955057