Back to Search Start Over

Cystathionine β-synthase (CBS) deficiency suppresses erythropoiesis by disrupting expression of heme biosynthetic enzymes and transporter

Authors :
Zhong-Ming Qian
Peng Zhao
Christopher Qian
Yuan Sheng
Ya Ke
Yun-Jin Chen
Source :
Cell Death and Disease, Vol 10, Iss 10, Pp 1-11 (2019), Cell Death & Disease
Publication Year :
2019
Publisher :
Nature Publishing Group, 2019.

Abstract

The reduced iron usage induced by the suppression of erythropoiesis is a major cause of the systemic iron overload in CBS knockout (CBS−/−) mice. However, the relevant mechanisms are unknown. Here, we examined changes in granulocyte/erythroid cell ratios, iron content, and expression of iron-metabolism proteins, including; two key enzymes involved in the heme biosynthetic pathway, ALAS2 (delta-aminolevulinate synthase 2) and FECH (ferrochelatase), a heme exporter from the cytosol and mitochondria, FLVCR (feline leukemia virus subgroup C cellular receptor) as well as EPO (erythropoietin), EPOR (erythropoietin receptor) and HIF-2α (hypoxia inducible factor-2 subunit α), in the blood, bone marrow or liver of CBS−/− (homozygous), CBS+/− (heterozygous) and CBS+/+ (Wild Type) mice. Our findings demonstrate that CBS deficiency can induce a significant reduction in the expression of ALAS2, FECH, FLVCR, HIF-2α, EPO, and EPOR as well as an increase in interleukin-6 (IL-6), hepcidin and iron content in the blood, bone marrow or liver of mice. We conclude that the suppression of erythropoiesis is mainly due to the CBS deficiency-induced disruption in the expression of heme biosynthetic enzymes and heme-transporter.

Details

Language :
English
ISSN :
20414889
Volume :
10
Issue :
10
Database :
OpenAIRE
Journal :
Cell Death and Disease
Accession number :
edsair.doi.dedup.....b0facdbac2b244f08bea2afb85182592
Full Text :
https://doi.org/10.1038/s41419-019-1951-0