Back to Search Start Over

Disc nucleus fortification for lumbar degenerative disc disease: a biomechanical study

Authors :
Donald Whiting
J. Brad Bellotte
Derrick A. Dupré
Boyle C. Cheng
Daniel J. Cook
Michael Y. Oh
Source :
Journal of neurosurgery. Spine. 24(5)
Publication Year :
2016

Abstract

OBJECTIVE Spinal stability is attributed in part to osteoligamentous structures, including the vertebral body, facets, intervertebral discs, and posterior elements. The materials in this study provide an opportunity to augment the degenerated nucleus without removing native disc material, a procedure introduced here as “fortification.” The objective of this study was to determine the effect of nucleus fortification on lumbar disc biomechanics. METHODS The authors performed in vitro analysis of human cadaveric functional spinal units (FSUs), along with characterization and quantification of movement of the units using biomechanical data in intact, disc-only, and fortified specimens. The units underwent removal of all posterior elements and annulus and were fortified by injecting a biogel into the nucleus pulposus. Each specimen was subjected to load testing, range of motion (ROM) quantification, and disc bulge measurements. Optoelectric tracking was used to quantify disc bulge. These criteria were assessed in the intact, disc-only, and fortified treatments. RESULTS Disc-only FSUs resulted in increased ROM when compared with intact and fortified conditions. Fortification of the FSU resulted in partial restoration of normal ROM in the treatment groups. Analysis of hysteresis loops showed more linear response in the fortified groups when compared with the intact and disc-only groups. CONCLUSIONS Disc nucleus fortification increases linearity and decreases ROM.

Details

ISSN :
15475646
Volume :
24
Issue :
5
Database :
OpenAIRE
Journal :
Journal of neurosurgery. Spine
Accession number :
edsair.doi.dedup.....b124334d4e993bb89d4e642d27338f73