Back to Search Start Over

Longitudinal machine learning modeling of MS patient trajectories improves predictions of disability progression

Authors :
Jeannette Lechner-Scott
Bart Van Wijmeersch
Serkan Ozakbas
Maria José Sá
Vahid Shaygannejad
Marco Onofrj
Tomas Kalincik
Ludwig Kappos
Gerardo Iuliano
Patrizia Sola
Eva Havrdova
Roberto Bergamaschi
Pierre Grammond
Raed Alroughani
Jose Luis Sanchez-Menoyo
Davide Maimone
Tamara Castillo Trivio
Celia Oreja-Guevara
Aysun Soysal
Murat Terzi
Thijs Becker
Francois Grand'Maison
Jens Kuhle
Edward De Brouwer
Maria Trojano
Franco Granella
Yves Moreau
Vincent Van Pesch
Tünde Csépány
Cristina Ramo-Tello
Fraser Moore
Riadh Gouider
Liesbet M. Peeters
Cavit Boz
Claudio Solaro
Daniele Spitaleri
Sara Eichau
Oliver Gerlach
Katherine Buzzard
Elisabetta Cartechini
Eduardo Aguera-Morales
DE BROUWER, Edward
BECKER, Thijs
Moreau, Yves
Havrdova, Eva
Trojano, Maria
Eichau, Sara
Ozakbas, Serkan
Onofrj, Marco
Grammond, Pierre
Kuhle, Jens
Kappos, Ludwig
Sola, Patrizia
Cartechini, Elisabetta
Lechner-Scott, Jeannette
Alroughani, Raed
Gerlach, Oliver
Kalincik, Tomas
Granella, Franco
Grand'maison, Francois
Bergamaschi, Roberto
José Sá, Maria
VAN WIJMEERSCH, Bart
Soysal, Aysun
Sanchez-Menoyo, Jose
Solaro, Claudio
Boz, Cavit
Iuliano, Gerardo
Buzzard, Katherine
Aguera-Morales, Eduardo
Terzi, Murat
Trivio, Tamara
Spitaleri, Daniele
Van Pesch, Vincent
Shaygannejad, Vahid
Moore, Fraser
Oreja-Guevara, Celia
Maimone, Davide
Gouider, Riadh
Csepany, Tunde
Ramo-Tello, Cristina
PEETERS, Liesbet
UCL - SSS/IONS/NEUR - Clinical Neuroscience
UCL - (SLuc) Service de neurologie
Source :
Computer Methods and Programs in Biomedicine, r-IGTP. Repositorio Institucional de Producción Científica del Instituto de Investigación Germans Trias i Pujol, instname, Computer methods and programs in biomedicine, Vol. 208, p. 106180 [1-14] (2021)
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

BACKGROUND AND OBJECTIVES: Research in Multiple Sclerosis (MS) has recently focused on extracting knowledge from real-world clinical data sources. This type of data is more abundant than data produced during clinical trials and potentially more informative about real-world clinical practice. However, this comes at the cost of less curated and controlled data sets. In this work we aim to predict disability progression by optimally extracting information from longitudinal patient data in the real-world setting, with a special focus on the sporadic sampling problem. METHODS: We use machine learning methods suited for patient trajectories modeling, such as recurrent neural networks and tensor factorization. A subset of 6682 patients from the MSBase registry is used. RESULTS: We can predict disability progression of patients in a two-year horizon with an ROC-AUC of 0.85, which represents a 32% decrease in the ranking pair error (1-AUC) compared to reference methods using static clinical features. CONCLUSIONS: Compared to the models available in the literature, this work uses the most complete patient history for MS disease progression prediction and represents a step forward towards AI-assisted precision medicine in MS. ispartof: COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE vol:208 ispartof: location:Ireland status: published

Details

ISSN :
01692607
Volume :
208
Database :
OpenAIRE
Journal :
Computer Methods and Programs in Biomedicine
Accession number :
edsair.doi.dedup.....b12b53d484c2e5ef516441f8870a553b