Back to Search
Start Over
Classification of Simple Cuspidal Modules over a Lattice Lie Algebra of Witt type
- Source :
- Canadian Journal of Mathematics, Canadian Journal of Mathematics, University of Toronto Press, 2021, 73, pp.417--440. ⟨10.4153/S0008414X20000012⟩
- Publication Year :
- 2018
-
Abstract
- Let $W_��$ be the lattice Lie algebra of Witt type associated with an additive inclusion $��: \mathbb{Z}^N \hookrightarrow \mathbb{C}^2$ with $N>1$. In this article, the classification of simple $\mathbb{Z}^N$-graded $W_��$-modules, whose multiplicities are uniformly bounded, is given.<br />29 pages
- Subjects :
- Pure mathematics
[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT]
General Mathematics
010102 general mathematics
Lattice Lie Algebra
Lattice (group)
AV-module
0102 computer and information sciences
Type (model theory)
01 natural sciences
010201 computation theory & mathematics
Simple (abstract algebra)
Lie algebra
FOS: Mathematics
cuspidal module
Uniform boundedness
0101 mathematics
Representation Theory (math.RT)
[MATH]Mathematics [math]
Mathematics - Representation Theory
Mathematics
Subjects
Details
- Language :
- English
- ISSN :
- 0008414X
- Database :
- OpenAIRE
- Journal :
- Canadian Journal of Mathematics, Canadian Journal of Mathematics, University of Toronto Press, 2021, 73, pp.417--440. ⟨10.4153/S0008414X20000012⟩
- Accession number :
- edsair.doi.dedup.....b183272703992448c9f551e019d87eec
- Full Text :
- https://doi.org/10.4153/S0008414X20000012⟩