Back to Search
Start Over
The effect of scattered neutrons on the ion temperature measurement with different line-of-sight on the SGIII laser facility
- Source :
- AIP Advances, Vol 9, Iss 1, Pp 015124-015124-8 (2019)
- Publication Year :
- 2019
- Publisher :
- AIP Publishing LLC, 2019.
-
Abstract
- Two neutron time-of-flight (nToF) detectors have been employed to measure the neutron time-of-flight spectrum in different lines-of-sight, i.e., at the equator plane and the south pole, on Shenguang-III (SG-III) laser facility. The contribution of scattered neutrons has been calculated with the Monte Carlo code JMCT for each nToF detector. The results show that the scattered neutron spectrum is dominated by neutrons scattered on materials in the experiment hall, including the vacuum chamber. The shape of the scattered neutron spectrum depends on the view line, which has been observed with nToF detectors located in the experiment hall of the SG-III laser facility. A method based on the convolution of the calculated neutron time-of-flight spectrum and the instrument response function has been developed for the ion temperature determination. The calculated neutron spectra with the contribution of scattered neutrons can fit the measured results. No obvious ion temperature anisotropy has been observed on the SG-III laser facility at present.Two neutron time-of-flight (nToF) detectors have been employed to measure the neutron time-of-flight spectrum in different lines-of-sight, i.e., at the equator plane and the south pole, on Shenguang-III (SG-III) laser facility. The contribution of scattered neutrons has been calculated with the Monte Carlo code JMCT for each nToF detector. The results show that the scattered neutron spectrum is dominated by neutrons scattered on materials in the experiment hall, including the vacuum chamber. The shape of the scattered neutron spectrum depends on the view line, which has been observed with nToF detectors located in the experiment hall of the SG-III laser facility. A method based on the convolution of the calculated neutron time-of-flight spectrum and the instrument response function has been developed for the ion temperature determination. The calculated neutron spectra with the contribution of scattered neutrons can fit the measured results. No obvious ion temperature anisotropy has been observed on the S...
- Subjects :
- 010302 applied physics
Physics
Astrophysics::High Energy Astrophysical Phenomena
Monte Carlo method
Detector
Nuclear Theory
General Physics and Astronomy
02 engineering and technology
021001 nanoscience & nanotechnology
Laser
01 natural sciences
Temperature measurement
lcsh:QC1-999
Computational physics
law.invention
law
0103 physical sciences
Neutron detection
Neutron
Vacuum chamber
0210 nano-technology
Anisotropy
Nuclear Experiment
lcsh:Physics
Subjects
Details
- Language :
- English
- ISSN :
- 21583226
- Volume :
- 9
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- AIP Advances
- Accession number :
- edsair.doi.dedup.....b1c7f41d55065337243bb213e6bf8697