Back to Search
Start Over
Two-Dimensional Magnetohydrodynamic Simulations of Barred Galaxies
- Publication Year :
- 2012
- Publisher :
- arXiv, 2012.
-
Abstract
- Barred galaxies are known to possess magnetic fields that may affect the properties of bar substructures such as dust lanes and nuclear rings. We use two-dimensional high-resolution magnetohydrodynamic (MHD) simulations to investigate the effects of magnetic fields on the formation and evolution of such substructures as well as on the mass inflow rates to the galaxy center. The gaseous medium is assumed to be infinitesimally-thin, isothermal, non-self-gravitating, and threaded by initially uniform, azimuthal magnetic fields. We find that there exists an outermost x1-orbit relative to which gaseous responses to an imposed stellar bar potential are completely different between inside and outside. Inside this orbit, gas is shocked into dust lanes and infalls to form a nuclear ring. Magnetic fields are compressed in dust lanes, reducing their peak density. Magnetic stress removes further angular momentum of the gas at the shocks, temporarily causing the dust lanes to bend into an 'L' shape and eventually leading to a smaller and more centrally distributed ring than in unmagnetized models. The mass inflow rates in magnetized models correspondingly become larger, by more than two orders of magnitude when the initial fields have an equipartition value with thermal energy, than in the unmagnetized counterparts. Outside the outermost x1-orbit, on the other hand, an MHD dynamo due to the combined action of the bar potential and background shear operates near the corotation and bar-end regions, efficiently amplifying magnetic fields. The amplified fields shape into trailing magnetic arms with strong fields and low density. The base of the magnetic arms has a thin layer in which magnetic fields with opposite polarity reconnect via a tearing-mode instability. This produces numerous magnetic islands with large density which propagate along the arms to turn the outer disk into a highly chaotic state.<br />Comment: 22 pages, 19 figures, 3 tables; Accepted for publication in the ApJ; Version with full-resolution figures available at http://mirzam.snu.ac.kr/~wkim/Bar/mhdbar.pdf
- Subjects :
- Physics
Angular momentum
Cosmology and Nongalactic Astrophysics (astro-ph.CO)
FOS: Physical sciences
Astronomy and Astrophysics
Instability
Astrophysics - Astrophysics of Galaxies
Dust lane
Magnetic field
Computational physics
Space and Planetary Science
Astrophysics of Galaxies (astro-ph.GA)
Magnetohydrodynamic drive
Astrophysics::Earth and Planetary Astrophysics
Magnetohydrodynamics
Astrophysics::Galaxy Astrophysics
Dynamo
Cosmic dust
Astrophysics - Cosmology and Nongalactic Astrophysics
Subjects
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....b1ce6ed6c4003e53c8d29f9510b66ae2
- Full Text :
- https://doi.org/10.48550/arxiv.1204.0073