Back to Search Start Over

Burst-aware predictive autoscaling for containerized microservices

Authors :
David Carrera
Waheed Iqbal
Muhammad Imran Abdullah
Josep Lluis Berral
Jordà Polo
Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
Barcelona Supercomputing Center
Universitat Politècnica de Catalunya. CAP - Grup de Computació d'Altes Prestacions
Source :
UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC)
Publication Year :
2022

Abstract

Autoscaling methods are used for cloud-hosted applications to dynamically scale the allocated resources for guaranteeing Quality-of-Service (QoS). The public-facing application serves dynamic workloads, which contain bursts and pose challenges for autoscaling methods to ensure application performance. Existing State-of-the-art autoscaling methods are burst-oblivious to determine and provision the appropriate resources. For dynamic workloads, it is hard to detect and handle bursts online for maintaining application performance. In this article, we propose a novel burst-aware autoscaling method which detects burst in dynamic workloads using workload forecasting, resource prediction, and scaling decision making while minimizing response time service-level objectives (SLO) violations. We evaluated our approach through a trace-driven simulation, using multiple synthetic and realistic bursty workloads for containerized microservices, improving performance when comparing against existing state-of-the-art autoscaling methods. Such experiments show an increase of × 1.09 in total processed requests, a reduction of × 5.17 for SLO violations, and an increase of × 0.767 cost as compared to the baseline method. This work was partially supported by the European Research Council (ERC) under the EU Horizon 2020 programme (GA 639595), the Spanish Ministry of Economy, Industry and Competitiveness (TIN2015-65316-P and IJCI2016-27485) and the Generalitat de Catalunya (2014-SGR-1051).

Details

Language :
English
Database :
OpenAIRE
Journal :
UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC)
Accession number :
edsair.doi.dedup.....b1df532320bd81633bbc6af8d9df6ed3