Back to Search
Start Over
Variations of Lehmer's Conjecture for Ramanujan's tau-function
- Source :
- Journal of Number Theory. 237:3-14
- Publication Year :
- 2022
- Publisher :
- Elsevier BV, 2022.
-
Abstract
- We consider natural variants of Lehmer's unresolved conjecture that Ramanujan's tau-function never vanishes. Namely, for $n>1$ we prove that $$\tau(n)\not \in \{\pm 1, \pm 3, \pm 5, \pm 7, \pm 691\}.$$ This result is an example of general theorems for newforms with trivial mod 2 residual Galois representation, which will appear in forthcoming work of the authors with Wei-Lun Tsai. Ramanujan's well-known congruences for $\tau(n)$ allow for the simplified proof in these special cases. We make use of the theory of Lucas sequences, the Chabauty-Coleman method for hyperelliptic curves, and facts about certain Thue equations.<br />Comment: To appear in JNT Prime. For more general results, see arXiv:2005.10354
- Subjects :
- Algebra and Number Theory
Conjecture
Mathematics - Number Theory
Lucas sequence
Mathematics::Number Theory
010102 general mathematics
010103 numerical & computational mathematics
Congruence relation
Galois module
01 natural sciences
Ramanujan's sum
Combinatorics
symbols.namesake
FOS: Mathematics
symbols
Number Theory (math.NT)
Ramanujan tau function
0101 mathematics
Lehmer's conjecture
Mathematics
Subjects
Details
- ISSN :
- 0022314X
- Volume :
- 237
- Database :
- OpenAIRE
- Journal :
- Journal of Number Theory
- Accession number :
- edsair.doi.dedup.....b1ff61c774591018d33733ef45db23c2
- Full Text :
- https://doi.org/10.1016/j.jnt.2020.04.009