Back to Search Start Over

Kalkayotl: A cluster distance inference code

Authors :
J. Olivares
A. Berihuete
Laia Casamiquela
Phillip A. B. Galli
N. Miret-Roig
L. M. Sarro
Y. Tarricq
Hervé Bouy
Estadística e Investigación Operativa
M2A 2020
Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB)
Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Source :
A&A 644, A7 (2020), RODIN. Repositorio de Objetos de Docencia e Investigación de la Universidad de Cádiz, instname, Astronomy and Astrophysics-A&A, Astronomy and Astrophysics-A&A, EDP Sciences, 2020, 644, pp.A7. ⟨10.1051/0004-6361/202037846⟩, RODIN: Repositorio de Objetos de Docencia e Investigación de la Universidad de Cádiz, Universidad de Cádiz, Astronomy & Astrophysics
Publication Year :
2020
Publisher :
EDP SCIENCES S A, 2020.

Abstract

Context: Stellar clusters are benchmarks for theories of star formation and evolution. The high precision parallax data of the Gaia mission allows significant improvements in the distance determination to stellar clusters and its stars. In order to have accurate and precise distance determinations, systematics like the parallax spatial correlations need to be accounted for, especially for stars in small sky regions. Aims: Provide the astrophysical community with a free and open code designed to simultaneously infer cluster parameters (i.e. distance and size) and the distances to its stars using Gaia parallax measurements. It includes cluster oriented prior families and is specifically designed to deal with the Gaia parallax spatial correlations. Methods: A Bayesian hierarchical model is created to allow the inference of both the cluster parameters and distances to its stars. Results: Using synthetic data that mimics Gaia parallax uncertainties and spatial correlations, we observe that our cluster oriented prior families result in distance estimates with smaller errors than those obtained with an exponentially decreasing space density prior. In addition, the treatment of the parallax spatial correlations minimizes errors in the estimated cluster size and stellar distances and avoids the underestimation of uncertainties. Although neglecting the parallax spatial correlations has no impact on the accuracy of cluster distance determinations, it underestimates the uncertainties and may result in measurements that are incompatible with the true value. Conclusions: The combination of prior knowledge with the treatment of Gaia parallax spatial correlations produces accurate (error<br />Comment: 14 pages, 10 figures, accepted in A&A, for the associated code visit https://github.com/olivares-j/Kalkayotl

Details

ISSN :
00046361
Database :
OpenAIRE
Journal :
A&A 644, A7 (2020), RODIN. Repositorio de Objetos de Docencia e Investigación de la Universidad de Cádiz, instname, Astronomy and Astrophysics-A&A, Astronomy and Astrophysics-A&A, EDP Sciences, 2020, 644, pp.A7. ⟨10.1051/0004-6361/202037846⟩, RODIN: Repositorio de Objetos de Docencia e Investigación de la Universidad de Cádiz, Universidad de Cádiz, Astronomy & Astrophysics
Accession number :
edsair.doi.dedup.....b2535010ce52a75415699289c05ab079
Full Text :
https://doi.org/10.1051/0004-6361/202037846⟩