Back to Search Start Over

Classification of Urban Scenes from Geo-referenced Images in Urban Street-View Context

Authors :
Corina Iovan
David Picard
Nicolas Thome
Matthieu Cord
Modélisation de la croissance et de l'architecture des plantes (DIGIPLANTE)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Mathématiques Appliquées aux Systèmes - EA 4037 (MAS)
Ecole Centrale Paris-Ecole Centrale Paris
Multimedia Indexation and Data Integration (MIDI)
Equipes Traitement de l'Information et Systèmes (ETIS - UMR 8051)
Ecole Nationale Supérieure de l'Electronique et de ses Applications (ENSEA)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY)-Ecole Nationale Supérieure de l'Electronique et de ses Applications (ENSEA)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY)
Machine Learning and Information Retrieval (MALIRE)
Laboratoire d'Informatique de Paris 6 (LIP6)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
Picard, David
Mathématiques Appliquées aux Systèmes - EA 4037 (MAS)
Ecole Centrale Paris-Ecole Centrale Paris-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Source :
Machine Learning and Applications (ICMLA), 2012 11th International Conference on, Machine Learning and Applications (ICMLA), 2012 11th International Conference on, Dec 2012, Boca Raton, Florida, United States. pp.339--344, ICMLA (2)
Publication Year :
2012
Publisher :
HAL CCSD, 2012.

Abstract

International audience; This paper addresses the challenging problem of scene classification in street-view georeferenced images of urban environments. More precisely, the goal of this task is semantic image classification, consisting in predicting in a given image, the presence or absence of a pre-defined class (e.g. shops, vegetation, etc.). The approach is based on the BOSSA representation, which enriches the Bag of Words (BoW) model, in conjunction with the Spatial Pyramid Matching scheme and kernel-based machine learning techniques. The proposed method handles problems that arise in large scale urban environments due to acquisition conditions (static and dynamic objects/pedestrians) combined with the continuous acquisition of data along the vehicle's direction, the varying light conditions and strong occlusions (due to the presence of trees, traffic signs, cars, etc.) giving rise to high intra-class variability. Experiments were conducted on a large dataset of high resolution images collected from two main avenues from the 12th district in Paris and the approach shows promising results.

Details

Language :
English
Database :
OpenAIRE
Journal :
Machine Learning and Applications (ICMLA), 2012 11th International Conference on, Machine Learning and Applications (ICMLA), 2012 11th International Conference on, Dec 2012, Boca Raton, Florida, United States. pp.339--344, ICMLA (2)
Accession number :
edsair.doi.dedup.....b26e96b77ff6820deac002321d693dbc