Back to Search
Start Over
The role of TET-mediated DNA hydroxymethylation in prostate cancer
- Publication Year :
- 2018
- Publisher :
- Elsevier, 2018.
-
Abstract
- Ten-eleven translocation (TET) proteins are recently characterized dioxygenases that regulate demethylation by oxidizing 5-methylcytosine to 5-hydroxymethylcytosine and further derivatives. The recent finding that 5hmC is also a stable and independent epigenetic modification indicates that these proteins play an important role in diverse physiological and pathological processes such as neural and tumor development. Both the genomic distribution of (hydroxy)methylation and the expression and activity of TET proteins are dysregulated in a wide range of cancers including prostate cancer. Up to now it is still unknown how changes in TET and 5(h)mC profiles are related to the pathogenesis of prostate cancer. In this review, we explore recent advances in the current understanding of how TET expression and function are regulated in development and cancer. Furthermore, we look at the impact on 5hmC in prostate cancer and the potential underlying mechanisms. Finally, we tried to summarize the latest techniques for detecting and quantifying global and locus-specific 5hmC levels of genomic DNA. ispartof: Molecular and Cellular Endocrinology vol:462 issue:Pt A pages:41-55 ispartof: location:Ireland status: published
- Subjects :
- Male
0301 basic medicine
DNA Hydroxymethylation
Prostate cancer
Epigenetics
TET
DNA hydroxymethylation
5hmC
Biology
Models, Biological
Biochemistry
Epigenesis, Genetic
Pathogenesis
03 medical and health sciences
Endocrinology
Proto-Oncogene Proteins
medicine
Animals
Humans
Molecular Biology
Genetics
Prostatic Neoplasms
Cancer
Methylation
DNA Methylation
medicine.disease
genomic DNA
030104 developmental biology
5-Methylcytosine
Cancer research
Function (biology)
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....b29a91797173a591dae83eeb0f46159c