Back to Search
Start Over
Rodents and satellites: Predicting mice abundance and distribution with Sentinel-2 data
- Source :
- Ecological informatics, 51, 157-167. Elsevier
- Publication Year :
- 2019
- Publisher :
- Elsevier BV, 2019.
-
Abstract
- Remote sensing data is widely used in numerous ecological applications. The Sentinel-2 satellites (S2 A and B), recently launched by the European Spatial Agency´s (ESA), provide at present the best revisit time, spatial and spectral resolution among the freely available remote sensing optical data. In this study, we explored the potential of S2 enhanced spectral and spatial resolution to explain and predict mice abundances and distribution in border habitats of agroecosystems. We compared the predictive ability of different vegetation and water indices derived from S2 and Landsat 8 (L8) imagery. Our analyses revealed that the best predictor of mice abundance was L8-derived Enhanced Vegetation Index (EVI). S2-based indices, however, outperformed those computed from L8 bands for indices estimated simultaneously to mice trappings and for mice distribution models. Furthermore, indices including S2 red-edge bands were the best predictors of the distribution of the two most common rodent species in the ensemble. The findings of this study can be used as guidelines when selecting the sensors and vegetation variables to be included in more complex models aimed at predicting the distribution and risk of various vector-borne diseases, and especially rodents in other agricultural landscapes. Fil: Andreo, Verónica Carolina. University Of Twente; Países Bajos. Ministerio de Salud. Instituto Nacional de Medicina Tropical; Argentina. Universidad Nacional del Nordeste; Argentina Fil: Belgiu, Mariana. University Of Twente; Países Bajos Fil: Brito Hoyos, Diana Marcela. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Osei, Frank. University Of Twente; Países Bajos Fil: Provensal, María Cecilia. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales; Argentina Fil: Stein, Alfred. University Of Twente; Países Bajos
- Subjects :
- 0106 biological sciences
Distribution (economics)
VEGETATION INDICES
INGENIERÍAS Y TECNOLOGÍAS
MICE ABUNDANCE
010603 evolutionary biology
01 natural sciences
REMOTE SENSING
Ciencias Biológicas
Vegetation indices
DISEASE ECOLOGY
Abundance (ecology)
Sensores Remotos
Red-edge bands
Disease ecology
Ingeniería del Medio Ambiente
Agroecosystems
Ecology, Evolution, Behavior and Systematics
Mice abundance
Ecology
business.industry
010604 marine biology & hydrobiology
Applied Mathematics
Ecological Modeling
RED-EDGE BANDS
Vegetation
Enhanced vegetation index
Ecología
Remote sensing
Computer Science Applications
Computational Theory and Mathematics
Habitat
ITC-ISI-JOURNAL-ARTICLE
Modeling and Simulation
Environmental science
business
Cartography
AGROECOSYSTEMS
CIENCIAS NATURALES Y EXACTAS
Agricultural landscapes
Subjects
Details
- ISSN :
- 15749541
- Volume :
- 51
- Database :
- OpenAIRE
- Journal :
- Ecological Informatics
- Accession number :
- edsair.doi.dedup.....b2a9c0571fea4c498fa2d6ff797b097a
- Full Text :
- https://doi.org/10.1016/j.ecoinf.2019.03.001