Back to Search Start Over

Class I phosphoinositide 3-kinases control sustained NADPH oxidase activation in adherent neutrophils

Authors :
Romain Le Bars
Elodie Hudik
Pham My-Chan Dang
Sophie Dupré-Crochet
Jamel El Benna
Blandine Roux
Oliver Nüsse
Zhimin Song
Institut de Biologie Intégrative de la Cellule (I2BC)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Microscopie Photonique (PHOT)
Département Plateforme (PF I2BC)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Lab Excellence Inflamex (CRI INSERM U1149 - Bichat Medical Faculty)
Université Paris Diderot - Paris 7 (UPD7)
Source :
Biochemical Pharmacology, Biochemical Pharmacology, 2020, 178, pp.114088. ⟨10.1016/j.bcp.2020.114088⟩, Biochemical Pharmacology, Elsevier, 2020, 178, pp.114088. ⟨10.1016/j.bcp.2020.114088⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

Place: Oxford Publisher: Pergamon-Elsevier Science Ltd WOS:000551658300034; Phagocytes, especially neutrophils, can produce reactive oxygen species (ROS), through the activation of the NADPH oxidase (NOX2). Although this enzyme is crucial for host-pathogen defense, ROS production by neutrophils can be harmful in several pathologies such as cardiovascular diseases or chronic pulmonary diseases. The ROS production by NOX2 involves the assembly of the cytosolic subunits (p67(phox), p47(phox), and p40(phox)) and Rac with the membrane subunits (gp91(phox) and p22(phox)). Many studies are devoted to the activation of NOX2. However, the mechanisms that cause NADPH oxidase deactivation and thus terminate ROS production are not well known. Here we investigated the ability of class I phosphoinositide 3-kinases (PI3Ks) to sustain NADPH oxidase activation. The NADPH oxidase activation was triggered by seeding neutrophil-like PLB-985 cells, or human neutrophils on immobilized fibrinogen. Adhesion of the neutrophils, mediated by beta 2 integrins, induced activation of the NADPH oxidase and translocation of the cytosolic subunits at the plasma membrane. Inhibition of class I PI3Ks, and especially PI3K beta, terminated ROS production. This deactivation of NOX2 is due to the release of the cytosolic subunits, p67(phox) and p47(phox) from the plasma membrane. Overexpression of an active form of Rac 1 did not prevent the drop of ROS production upon inhibition of class I PI3Ks. Moreover, the phosphorylation of p47(phox) at S328, a potential target of kinases activated by the PI3K pathway, was unchanged. Our results indicate that the experimental downregulation of class I PI3K products triggers the plasma membrane NADPH oxidase deactivation. Release of p47(phox) from the plasma membrane may involve its PX domains that bind PI3K products.

Details

Language :
English
ISSN :
00062952 and 18732968
Database :
OpenAIRE
Journal :
Biochemical Pharmacology, Biochemical Pharmacology, 2020, 178, pp.114088. ⟨10.1016/j.bcp.2020.114088⟩, Biochemical Pharmacology, Elsevier, 2020, 178, pp.114088. ⟨10.1016/j.bcp.2020.114088⟩
Accession number :
edsair.doi.dedup.....b2cd68e0ecf9334343b8557150f1878e