Back to Search Start Over

SDSS-IV MaNGA: How the stellar populations of passive central galaxies depend on stellar and halo mass

Authors :
Grecco A. Oyarzún
Kevin Bundy
Kyle B. Westfall
Jeremy L. Tinker
Francesco Belfiore
Maria Argudo-Fernández
Zheng Zheng
Charlie Conroy
Karen L. Masters
David Wake
David R. Law
Richard M. McDermid
Alfonso Aragón-Salamanca
Taniya Parikh
Renbin Yan
Matthew Bershady
Sebastián F. Sánchez
Brett H. Andrews
José G. Fernández-Trincado
Richard R. Lane
D. Bizyaev
Nicholas Fraser Boardman
Ivan Lacerna
J. R. Brownstein
Niv Drory
Kai Zhang
University of St Andrews. School of Physics and Astronomy
Publication Year :
2022

Abstract

We analyze spatially resolved and co-added SDSS-IV MaNGA spectra with signal-to-noise ~100 from 2200 passive central galaxies (z~0.05) to understand how central galaxy assembly depends on stellar mass (M*) and halo mass (Mh). We control for systematic errors in Mh by employing a new group catalog from Tinker (2020a,b) and the widely-used Yang et al. (2007) catalog. At fixed M*, the strength of several stellar absorption features varies systematically with Mh. Completely model-free, this is one of the first indications that the stellar populations of centrals with identical M* are affected by the properties of their host halos. To interpret these variations, we applied full spectral fitting with the code alf. At fixed M*, centrals in more massive halos are older, show lower [Fe/H], and have higher [Mg/Fe] with 3.5 sigma confidence. We conclude that halos not only dictate how much M* galaxies assemble, but also modulate their chemical enrichment histories. Turning to our analysis at fixed Mh, high-M* centrals are older, show lower [Fe/H], and have higher [Mg/Fe] for Mh>10^{12}Msun/h with confidence > 4 sigma. While massive passive galaxies are thought to form early and rapidly, our results are among the first to distinguish these trends at fixed Mh. They suggest that high-M* centrals experienced unique early formation histories, either through enhanced collapse and gas fueling, or because their halos were early-forming and highly concentrated, a possible signal of galaxy assembly bias.<br />Accepted for publication in ApJ. 28 pages and 12 figures

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....b2e5ecf3f04e2d0eb75927f86eb3ba4a