Back to Search Start Over

Production of l-lysine on different silage juices using genetically engineered Corynebacterium glutamicum

Authors :
Ines Wagner
Roland Ulber
T. Sieker
Konstantin Schneider
Andreas Neuner
Elmar Heinzle
Susanne Peifer
Source :
Journal of Biotechnology. 163:217-224
Publication Year :
2013
Publisher :
Elsevier BV, 2013.

Abstract

Corynebacterium glutamicum, the best established industrial producer organism for lysine was genetically modified to allow the production of lysine on grass and corn silages. The resulting strain C. glutamicum lysC(fbr)dld(Psod)pyc(Psod)malE(Psod)fbp(Psod)gapX(Psod) was based on earlier work (Neuner and Heinzle, 2011). That mutant carries a point mutation in the aspartokinase (lysC) regulatory subunit gene as well as overexpression of D-lactate dehydrogenase (dld), pyruvate carboxylase (pyc) and malic enzyme (malE) using the strong Psod promoter. Here, we additionally overexpressed fructose 1,6-bisphosphatase (fbp) and glyceraldehyde 3-phosphate dehydrogenase (gapX) using the same promoter. The resulting strain grew readily on grass and corn silages with a specific growth rate of 0.35 h⁻¹ and lysine carbon yields of approximately 90 C-mmol (C-mol)⁻¹. Lysine yields were hardly affected by oxygen limitation whereas linear growth was observed under oxygen limiting conditions. Overall, this strain seems very robust with respect to the composition of silage utilizing all quantified low molecular weight substrates, e.g. lactate, glucose, fructose, maltose, quinate, fumarate, glutamate, leucine, isoleucine and alanine.

Details

ISSN :
01681656
Volume :
163
Database :
OpenAIRE
Journal :
Journal of Biotechnology
Accession number :
edsair.doi.dedup.....b315e3e6c37700b96e84a6cbfb600a71
Full Text :
https://doi.org/10.1016/j.jbiotec.2012.07.190