Back to Search Start Over

A numerical parametric study of the mechanical action of pulsatile blood flow onto axisymmetric stenosed arteries

Authors :
Tristan Belzacq
Stéphane Avril
Emmanuel Leriche
Alexandre Delache
Centre Ingénierie et Santé (CIS-ENSMSE)
École des Mines de Saint-Étienne (Mines Saint-Étienne MSE)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
Institut Fédératif de Recherche en Sciences et Ingénierie de la Santé (IFRESIS-ENSMSE)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-IFR143
Département Biomécanique et Biomatériaux (DB2M-ENSMSE)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-CIS
UMR 5146 - Laboratoire Claude Goux (LCG-ENSMSE)
Laboratoire de Mathématiques de l'Université de Saint-Etienne (LAMUSE)
Université Jean Monnet [Saint-Étienne] (UJM)
Laboratoire de Mecanique des Fluides et d'Acoustique (LMFA)
École Centrale de Lyon (ECL)
Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
PRES de LYON
Université Jean Monnet
LAMUSE (Laboratoire de Mathématiques de l'Université de Saint-Etienne)
Ecole Centrale de Lyon
LMFA (Laboratoire de Mécanique des fluides et d'acoustique)
Source :
Medical Engineering and Physics, Medical Engineering and Physics, Elsevier, 2012, 34 (10), pp.1483-1495. ⟨10.1016/j.medengphy.2012.02.010⟩
Publication Year :
2012
Publisher :
HAL CCSD, 2012.

Abstract

International audience; In the present paper, a fluid-structure interaction model is developed, questioning how the mechanical action of the blood onto an atheromatous plaque is affected by the length and the severity of the stenosis. An axisymmetric model is considered. The fluid is assumed Newtonian. The plaque is modelled as a heterogeneous hyperelastic anisotropic solid composed of the arterial wall, the lipid core and the fibrous cap. Transient velocity and pressure conditions of actual pulsatile blood flow are prescribed. The simulation is achieved using the Arbitrary Lagrangian Eulerian scheme in the COMSOL commercial Finite Element package. The results reveal different types of behavior in function of the length (denoted L) and severity (denoted S) of the stenosis. Whereas large plaques (L > 10 mm) are mostly deformed under the action of the blood pressure, it appears that shorter plaques (L < 10 mm) are significantly affected by the shear stresses. The shear stresses tend to deform the plaque by pinching it. This effect is called: "the pinching effect". It has an essential influence on the mechanical response of the plaque. For two plaques having the same radius severity S = 45%, the maximum stress in the fibrous cap is 50% larger for the short plaque (L = 5 mm) than for a larger plaque (L = 10 mm), and the maximum wall shear stress is increased by 100%. Provided that they are confirmed by experimental investigations, these results may offer some new perspectives for understanding the vulnerability of short plaques.

Details

Language :
English
ISSN :
13504533
Database :
OpenAIRE
Journal :
Medical Engineering and Physics, Medical Engineering and Physics, Elsevier, 2012, 34 (10), pp.1483-1495. ⟨10.1016/j.medengphy.2012.02.010⟩
Accession number :
edsair.doi.dedup.....b32d196a2cadc4e4524c8bea753c7410
Full Text :
https://doi.org/10.1016/j.medengphy.2012.02.010⟩