Back to Search Start Over

Optical characterization of a SCISSOR device

Authors :
Jean-Marc Fedeli
M Masi
M. R. Vanacharla
Paolo Bettotti
Mattia Mancinelli
Lorenzo Pavesi
Romain Guider
Source :
Optics Express
Publication Year :
2011

Abstract

Here, we report on the design, fabrication and characterization of single-channel (SC-) and dual-channel (DC-) side-coupled integrated spaced sequences of optical resonators (SCISSOR) with a finite number (eight) of microring resonators using submicron silicon photonic wires on a silicon-on-insulator (SOI) wafer. We present results on the observation of multiple resonances in the through and the drop port signals of DC-SCISSOR. These result from the coupled resonator induced transparency (CRIT) which appears when the resonator band (RB) and the Bragg band (BB) are nearly coincident. We also observe the formation of high-Q (> 23000) quasi-localized modes in the RB of the drop transmission which appear when the RB and BB are well separated from each other. These multiple resonances and quasi-localized modes are induced by nanometer-scale structural disorders in the dimension of one or more rings. Finally, we demonstrate the tunability of RB (and BB) and localized modes in the DC-SCISSOR by thermo-optical or free-carrier refraction.

Details

ISSN :
10944087
Database :
OpenAIRE
Journal :
Optics Express
Accession number :
edsair.doi.dedup.....b332142da3864bbc826d2aa21284c1e7
Full Text :
https://doi.org/10.1364/OE.19.013664