Back to Search Start Over

Protein Transport Across the Bacterial Plasma Membrane by the Sec Pathway

Authors :
Spyridoula Karamanou
Maria S Loos
Anastassios Economou
Dries Smets
Source :
The protein journal. 38(3)
Publication Year :
2019

Abstract

More than a third of all bacterial polypeptides, comprising the 'exportome', are transported to extracytoplasmic locations. Most of the exportome is targeted and inserts into ('membranome') or crosses ('secretome') the plasma membrane. The membranome and secretome use distinct targeting signals and factors, and driving forces, but both use the ubiquitous and essential Sec translocase and its SecYEG protein-conducting channel. Membranome export is co-translational and uses highly hydrophobic N-terminal signal anchor sequences recognized by the signal recognition particle on the ribosome, that also targets C-tail anchor sequences. Translating ribosomes drive movement of these polypeptides through the lateral gate of SecY into the inner membrane. On the other hand, secretome export is post-translational and carries two types of targeting signals: cleavable N-terminal signal peptides and multiple short hydrophobic targeting signals in their mature domains. Secretome proteins remain translocation competent due to occupying loosely folded to completely non-folded states during targeting. This is accomplished mainly by the intrinsic properties of mature domains and assisted by signal peptides and/or chaperones. Secretome proteins bind to the dimeric SecA subunit of the translocase. SecA converts from a dimeric preprotein receptor to a monomeric ATPase motor and drives vectorial crossing of chains through SecY aided by the proton motive force. Signal peptides are removed by signal peptidases and translocated chains fold or follow subsequent trafficking.

Details

ISSN :
18758355
Volume :
38
Issue :
3
Database :
OpenAIRE
Journal :
The protein journal
Accession number :
edsair.doi.dedup.....b3bef7bb235cc3de60e3aa2314d8bd40