Back to Search Start Over

Attosecond charge migration following oxygen K-shell ionization in DNA bases and base pairs

Authors :
Mohsen Vafaee
Fatemeh Khalili
Babak Shokri
Source :
Physical Chemistry Chemical Physics. 23:23005-23013
Publication Year :
2021
Publisher :
Royal Society of Chemistry (RSC), 2021.

Abstract

Core ionization of DNA begins a cascade of events which could lead to cellular inactivation or death. The created core-hole following an impulse inner-shell ionization of molecules naturally decays in the auger timescale. We simulated charge migration (CM) phenomena following an impulsive core ionization of individual DNA bases at the oxygen K-edge which occurs before Auger decay of the oxygen. Our approach is based on real-time time dependent density functional theory (RT-TDDFT). It is shown that the pronounced hole fluctuation observed around bonds of the initial core-hole results in various valence orbital migrations. Also, the same photo-core-ionized dynamics is studied for the related base pairs. We investigate the role of base pairing and H-bonding interactions in the attosecond CM dynamics. In particular, the creation of a core-hole in the oxygen involved in H-bonding leads to an enhancement of charge migration relative to the respective single bases. Importantly, the hole oscillation of the adenine-thymine base pair upon creation of a core-hole at the oxygen, which does not contribute to the donor-acceptor interactions (not H-bonded), decreases compared to the single thymine base. Understanding the detailed dynamics of the localized core-hole initiating CM process would open the way for chemically controlling DNA damage/repair in the future.

Details

ISSN :
14639084 and 14639076
Volume :
23
Database :
OpenAIRE
Journal :
Physical Chemistry Chemical Physics
Accession number :
edsair.doi.dedup.....b3e5c748e83d5ee2f34c1b719f38799d
Full Text :
https://doi.org/10.1039/d1cp02920g