Back to Search Start Over

Complex and p-adic branched functions and growth of entire functions

Authors :
Alain Escassut
Jacqueline Ojeda
Kamal Boussaf
Laboratoire de Mathématiques Blaise Pascal (LMBP)
Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)
Centro de Investigación en Ingeniería Matemática [Concepción] (CI²MA)
Universidad de Concepción [Chile]
Escassut, Alain
Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Centre National de la Recherche Scientifique (CNRS)
Universidad de Concepción - University of Concepcion [Chile]
Source :
Bulletin of the Belgian Mathematical Society-Simon Stevin, Bulletin of the Belgian Mathematical Society-Simon Stevin, Belgian Mathematical Society, 2015, Bulletin of the Belgian Mathematical Society-Simon Stevin, 2015, Bull. Belg. Math. Soc. Simon Stevin 22, no. 5 (2015), 781-796
Publication Year :
2015
Publisher :
HAL CCSD, 2015.

Abstract

Following a previous paper by Jacqueline Ojeda and the first author, here we examine the number of possible branched values and branched functions for certain $p$-adic and complex meromorphic functions where numerator and denominator have different kind of growth, either when the denominator is small comparatively to the numerator, or vice-versa, or (for p-adic functions) when the order or the type of growth of the numerator is different from this of the denominator: this implies that one is a small function comparatively to the other. Finally, if a complex meromorphic function $\displaystyle{f\over g}$ admits four perfectly branched small functions, then $T(r,f)$ and $T(r,g)$ are close. If a p-adic meromorphic function $\displaystyle{f\over g}$ admits four branched values, then $f$ and $g$ have close growth. We also show that, given a p-adic meromorphic function $f$, there exists at most one small function $w$ such that $f-w$ admits finitely many zeros and an entire function admits no such a small function.

Details

Language :
English
ISSN :
13701444
Database :
OpenAIRE
Journal :
Bulletin of the Belgian Mathematical Society-Simon Stevin, Bulletin of the Belgian Mathematical Society-Simon Stevin, Belgian Mathematical Society, 2015, Bulletin of the Belgian Mathematical Society-Simon Stevin, 2015, Bull. Belg. Math. Soc. Simon Stevin 22, no. 5 (2015), 781-796
Accession number :
edsair.doi.dedup.....b3e8651cb52e7605d5064bd77d73ae4f