Back to Search Start Over

Evaluation of a New Digital Automated Glycemic Pattern Detection Tool

Authors :
Comellas, María José
Albiñana, Emma
Artes, Maite
Corcoy i Pla, Rosa
Fernández-García, Diego
García-Alemán, Jorge
García-Cuartero, Beatriz
González, Cintia
Rivero, María Teresa
Casamira, Núria
Weissmann, Jörg
Universitat Autònoma de Barcelona
Source :
Repositorio Institucional de la Consejería de Sanidad de la Comunidad de Madrid, Consejería de Sanidad de la Comunidad de Madrid, Dipòsit Digital de Documents de la UAB, Universitat Autònoma de Barcelona, Diabetes Technology & Therapeutics, Recercat: Dipósit de la Recerca de Catalunya, Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya), r-IIB SANT PAU. Repositorio Institucional de Producción Científica del Instituto de Investigación Biomédica Sant Pau, instname, Recercat. Dipósit de la Recerca de Catalunya
Publication Year :
2017

Abstract

Background: Blood glucose meters are reliable devices for data collection, providing electronic logs of historical data easier to interpret than handwritten logbooks. Automated tools to analyze these data are necessary to facilitate glucose pattern detection and support treatment adjustment. These tools emerge in a broad variety in a more or less nonevaluated manner. The aim of this study was to compare eDetecta, a new automated pattern detection tool, to nonautomated pattern analysis in terms of time investment, data interpretation, and clinical utility, with the overarching goal to identify early in development and implementation of tool areas of improvement and potential safety risks. Methods: Multicenter web-based evaluation in which 37 endocrinologists were asked to assess glycemic patterns of 4 real reports (2 continuous subcutaneous insulin infusion [CSII] and 2 multiple daily injection [MDI]). Endocrinologist and eDetecta analyses were compared on time spent to analyze each report and agreement on the presence or absence of defined patterns. Results: eDetecta module markedly reduced the time taken to analyze each case on the basis of the emminens eConecta reports (CSII: 18min; MDI: 12.5), compared to the automatic eDetecta analysis. Agreement between endocrinologists and eDetecta varied depending on the patterns, with high level of agreement in patterns of glycemic variability. Further analysis of low level of agreement led to identifying areas where algorithms used could be improved to optimize trend pattern identification. Conclusion: eDetecta was a useful tool for glycemic pattern detection, helping clinicians to reduce time required to review emminens eConecta glycemic reports. No safety risks were identified during the study.

Details

Language :
English
ISSN :
15209156
Database :
OpenAIRE
Journal :
Repositorio Institucional de la Consejería de Sanidad de la Comunidad de Madrid, Consejería de Sanidad de la Comunidad de Madrid, Dipòsit Digital de Documents de la UAB, Universitat Autònoma de Barcelona, Diabetes Technology & Therapeutics, Recercat: Dipósit de la Recerca de Catalunya, Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya), r-IIB SANT PAU. Repositorio Institucional de Producción Científica del Instituto de Investigación Biomédica Sant Pau, instname, Recercat. Dipósit de la Recerca de Catalunya
Accession number :
edsair.doi.dedup.....b40959d5a38857b082d297ddfeee8df0