Back to Search Start Over

Optimal direct electron transfer between MWCNTs@COOH/BOD/chitosan layer and porous carbon felt for dioxygen reduction

Authors :
Thi Xuan Huong Le
Mikhael Bechelany
Valérie Flaud
Marc Cretin
Sophie Tingry
Institut Européen des membranes (IEM)
Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)
Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM)
Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)
Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Source :
Electrochimica Acta, Electrochimica Acta, Elsevier, 2017, 230, pp.373-381. ⟨10.1016/j.electacta.2017.01.196⟩
Publication Year :
2017
Publisher :
Elsevier BV, 2017.

Abstract

International audience; We present the effect of thermal treatment of carbon felt by gas flow containing 1% of oxygen at high temperature on the direct electron transfer and electrocatalytic oxygen reduction currents by a bilirubin oxidase (BOD) film directly adsorbed in the presence of carbon nanotubes on to a porous carbon felt (PCF). The upgraded properties (surface area, pore volume and hydrophilicity) of the resulting porous carbon felt (PCF) in comparison to commercial carbon felt (raw CF), creates a suitable support for the entrapment of MWCNTs bearing negative charges at neutral pH and BOD enzymes, all the components being entrapped in chitosan layer reticulated with glutaraldehyde. Since functional MWCNTs are 2 usually used to facilitate DET, we introduce COOH@MWCNTs, bearing negative charges at neutral pH, in the enzyme layer to evaluate their impact on the electron transfer properties with BOD. The enzyme immobilization efficiency is examined by varying the amount of the components and the immobilization procedure. Linear sweep voltammetry (LSV) and chronoamperometry measurements are used to evaluate the electrochemical behavior of the enzymatic biocathodes. Based on the experimental results, we show that the optimized bioelectrode delivers a current density of 3.70 mA cm-2at 0.15 V vs Ag/AgCl and could retain above 55 % of its initial response after 4 months, proving its outstanding performance. This new bioelectrode allows for optimal DET-type bioelectrocatalytic activity toward O2 reduction and is a very promising candidate for the construction of 3-dimensional cathodes in (bio)-electrochemical devices needing high current output.

Details

ISSN :
00134686
Volume :
230
Database :
OpenAIRE
Journal :
Electrochimica Acta
Accession number :
edsair.doi.dedup.....b421581e9191786a8273a3ad1721c545