Back to Search
Start Over
Arithmetic structures for differential operators on formal schemes
- Source :
- Nagoya Mathematical Journal, Nagoya Mathematical Journal, Duke University Press, 2019, pp.1-48. ⟨10.1017/nmj.2019.37⟩, Nagoya Mathematical Journal, Duke University Press, 2021, 243, pp.157-204. ⟨10.1017/nmj.2019.37⟩, Nagoya Mathematical Journal, 2021, 243, pp.157-204. ⟨10.1017/nmj.2019.37⟩
- Publication Year :
- 2017
- Publisher :
- HAL CCSD, 2017.
-
Abstract
- Let ${\mathfrak o}$ be a complete discrete valuation ring of mixed characteristic $(0,p)$ and ${\mathfrak X}_0$ a smooth formal scheme over the formal spectrum of ${\mathfrak o}$. Given an admissible formal blow-up ${\mathfrak X}$ of ${\mathfrak X}_0$ we introduce sheaves of differential operators ${\mathscr D}^\dagger_{{\mathfrak X},k}$ on ${\mathfrak X}$, for every integer $k \ge k_{\mathfrak X}$, where $k_{\mathfrak X}$ depends on the blow-up morphism ${\mathfrak X}\rightarrow {\mathfrak X}_0$. This generalizes Berthelot's construction of sheaves of arit hmetic differential operators on ${\mathfrak X}_0$. The coherence of these sheaves and several other basic properties are proven. In the second part we study the projective limit sheaf ${\mathscr D}_{{\mathfrak X},\infty} = \varprojlim_k {\mathscr D}^\dagger_{{\mathfrak X},k}$ and so-called coadmissible modules for ${\mathscr D}_{{\mathfrak X},\infty}$. The inductive limit of the sheaves ${\mathscr D}_{{\mathfrak X},\infty}$, over all admissible blow-ups ${\mathfrak X}$ of ${\mathfrak X}_0$, gives rise to a sheaf ${\mathscr D}_{\langle {\mathfrak X}_0 \rangle}$ on the Zariski-Riemann space of ${\mathfrak X}_0$. Analogues of Theorems A and B are shown to hold in each of these settings, i.e., for ${\mathscr D}^\dagger_{{\mathfrak X},k}$, ${\mathscr D}_{{\mathfrak X},\infty}$, and ${\mathscr D}_{\langle {\mathfrak X}_0\rangle}$.<br />Comment: Some error corrected and some examples added
- Subjects :
- General Mathematics
010102 general mathematics
Formal scheme
Spectrum (functional analysis)
Field (mathematics)
14G22, 16S32
Differential operator
01 natural sciences
Discrete valuation ring
[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]
Mathematics - Algebraic Geometry
Mathematics::Algebraic Geometry
0103 physical sciences
FOS: Mathematics
Fraction (mathematics)
010307 mathematical physics
[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
0101 mathematics
Arithmetic
[MATH]Mathematics [math]
Mathematics::Representation Theory
Algebraic Geometry (math.AG)
ComputingMilieux_MISCELLANEOUS
Mathematics
Subjects
Details
- Language :
- English
- ISSN :
- 00277630
- Database :
- OpenAIRE
- Journal :
- Nagoya Mathematical Journal, Nagoya Mathematical Journal, Duke University Press, 2019, pp.1-48. ⟨10.1017/nmj.2019.37⟩, Nagoya Mathematical Journal, Duke University Press, 2021, 243, pp.157-204. ⟨10.1017/nmj.2019.37⟩, Nagoya Mathematical Journal, 2021, 243, pp.157-204. ⟨10.1017/nmj.2019.37⟩
- Accession number :
- edsair.doi.dedup.....b4263ae82143238b2ecf81fec28b2788