Back to Search Start Over

Quantization of conductance minimum and index theorem

Authors :
Yasuhiro Asano
Yukio Tanaka
Satoshi Ikegaya
Shu-Ichiro Suzuki
Source :
Physical Review B. 94(5):054512
Publication Year :
2016
Publisher :
American Physical Society (APS), 2016.

Abstract

We discuss the minimum value of the zero-bias differential conductance $G_{\textrm{min}}$ in a junction consisting of a normal metal and a nodal superconductor preserving time-reversal symmetry. Using the quasiclassical Green function method, we show that $G_{\textrm{min}}$ is quantized at $ (4e^2/h) N_{\mathrm{ZES}}$ in the limit of strong impurity scatterings in the normal metal. The integer $N_{\mathrm{ZES}}$ represents the number of perfect transmission channels through the junction. An analysis of the chiral symmetry of the Hamiltonian indicates that $N_{\mathrm{ZES}}$ corresponds to the Atiyah-Singer index in mathematics.<br />Comment: 5 pages, 1 figure

Details

Language :
English
ISSN :
24699950
Volume :
94
Issue :
5
Database :
OpenAIRE
Journal :
Physical Review B
Accession number :
edsair.doi.dedup.....b427f9154cbf2ceeef99c9af2f261eb3