Back to Search
Start Over
Quantization of conductance minimum and index theorem
- Source :
- Physical Review B. 94(5):054512
- Publication Year :
- 2016
- Publisher :
- American Physical Society (APS), 2016.
-
Abstract
- We discuss the minimum value of the zero-bias differential conductance $G_{\textrm{min}}$ in a junction consisting of a normal metal and a nodal superconductor preserving time-reversal symmetry. Using the quasiclassical Green function method, we show that $G_{\textrm{min}}$ is quantized at $ (4e^2/h) N_{\mathrm{ZES}}$ in the limit of strong impurity scatterings in the normal metal. The integer $N_{\mathrm{ZES}}$ represents the number of perfect transmission channels through the junction. An analysis of the chiral symmetry of the Hamiltonian indicates that $N_{\mathrm{ZES}}$ corresponds to the Atiyah-Singer index in mathematics.<br />Comment: 5 pages, 1 figure
- Subjects :
- Superconductivity
Transmission channel
Chiral symmetry
Condensed Matter - Superconductivity
Conductance
FOS: Physical sciences
02 engineering and technology
021001 nanoscience & nanotechnology
01 natural sciences
Superconductivity (cond-mat.supr-con)
symbols.namesake
Quantization (physics)
Condensed Matter::Superconductivity
0103 physical sciences
symbols
Zero temperature
010306 general physics
0210 nano-technology
Hamiltonian (quantum mechanics)
Atiyah–Singer index theorem
Mathematical physics
Subjects
Details
- Language :
- English
- ISSN :
- 24699950
- Volume :
- 94
- Issue :
- 5
- Database :
- OpenAIRE
- Journal :
- Physical Review B
- Accession number :
- edsair.doi.dedup.....b427f9154cbf2ceeef99c9af2f261eb3