Back to Search Start Over

Induction of Efflux-Mediated Macrolide Resistance in Streptococcus pneumoniae ▿

Authors :
Xiaoliu Zhou
Dorothea Zähner
David S. Stephens
Scott T. Chancey
Publication Year :
2011
Publisher :
American Society for Microbiology, 2011.

Abstract

The antimicrobial efflux system encoded by the operon mef(E)-mel on the mobile genetic element MEGA in Streptococcus pneumoniae and other Gram-positive bacteria is inducible by macrolide antibiotics and antimicrobial peptides. Induction may affect the clinical response to the use of macrolides. We developed mef(E) reporter constructs and a disk diffusion induction and resistance assay to determine the kinetics and basis of mef(E)-mel induction. Induction occurred rapidly, with a >15-fold increase in transcription within 1 h of exposure to subinhibitory concentrations of erythromycin. A spectrum of environmental conditions, including competence and nonmacrolide antibiotics with distinct cellular targets, did not induce mef(E). Using 16 different structurally defined macrolides, induction was correlated with the amino sugar attached to C-5 of the macrolide lactone ring, not with the size (e.g., 14-, 15- or 16-member) of the ring or with the presence of the neutral sugar cladinose at C-3. Macrolides with a monosaccharide attached to C-5, known to block exit of the nascent peptide from the ribosome after the incorporation of up to eight amino acids, induced mef(E) expression. Macrolides with a C-5 disaccharide, which extends the macrolide into the ribosomal exit tunnel, disrupting peptidyl transferase activity, did not induce it. The induction of mef(E) did not require macrolide efflux, but the affinity of macrolides for the ribosome determined the availability for efflux and pneumococcal susceptibility. The induction of mef(E)-mel expression by inducing macrolides appears to be based on specific interactions of the macrolide C-5 saccharide with the ribosome that alleviate transcriptional attenuation of mef(E)-mel.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....b43d0f885703953ed691e4bdff0e801e