Back to Search Start Over

A new automated system to identify a consistent sampling position to make tissue Doppler and transmitral Doppler measurements of E, E′ and E/E′☆☆☆

Authors :
Alun D. Hughes
Daniel Rueckert
Darrel P. Francis
Kim H. Parker
Graham D. Cole
Keith Willson
Niti M. Dhutia
Source :
International Journal of Cardiology
Publication Year :
2012
Publisher :
Elsevier, 2012.

Abstract

Background Transmitral pulse wave (PW) Doppler and annular tissue Doppler velocity measurements provide valuable diagnostic and prognostic information. However, they depend on an echocardiographer manually selecting positions to make the measurements. This is time-consuming and open to variability, especially by less experienced operators. We present a new, automated method to select consistent Doppler velocity sites to measure blood flow and muscle function. Methods Our automated algorithm combines speckle tracking and colour flow mapping to locate the septal and lateral mitral valve annuli (to measure peak early diastolic velocity, E′) and the mitral valve inflow (to measure peak inflow velocity, E). We also automate peak velocity measurements from resulting PW Doppler traces. The algorithm-selected locations and time taken to identify them were compared against a panel of echo specialists — the current “gold standard”. Results The algorithm identified positions to measure Doppler velocities within 3.6 ± 2.2 mm (mitral inflow), 3.2 ± 1.8 mm (septal annulus) and 3.8 ± 1.5 mm (lateral annulus) of the consensus of 3 specialists. This was less than the average 4 mm fidelity with which the specialists could themselves identify the points. The automated algorithm could potentially reduce the time taken to make these measurements by 60 ± 15%. Conclusions Our automated algorithm identified sampling positions for measurement of mitral flow, septal and lateral tissue velocities as reliably as specialists. It provides a rapid, easy method for new specialists and potentially non-specialists to make automated measurements of key cardiac physiological indices. This could help support decision-making, without introducing delay and extend availability of echocardiography to more patients.

Details

Language :
English
ISSN :
18741754 and 01675273
Volume :
155
Issue :
3
Database :
OpenAIRE
Journal :
International Journal of Cardiology
Accession number :
edsair.doi.dedup.....b4a2b77b0b639f5b94ee1e5cad0e8334