Back to Search Start Over

Universal shape law of stochastic supercritical bifurcations: theory and experiments

Authors :
Marcel G. Clerc
Gonzague Agez
Eric Louvergneaux
Departamento de Física, Facultad de Ciencias Físicas y Matemáticas Universidad de Chile
Facultad de Ciencias Físicas y Matemáticas Universidad de Chile
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM)
Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Source :
Physical Review E, Physical Review E, American Physical Society (APS), 2008, 77 (2), pp.026218. ⟨10.1103/PhysRevE.77.026218⟩, Physical Review E, 2008, 77 (2), pp.026218. ⟨10.1103/PhysRevE.77.026218⟩
Publication Year :
2006

Abstract

A universal law for the supercritical bifurcation shape of transverse one-dimensional (1D) systems in presence of additive noise is given. The stochastic Langevin equation of such systems is solved by using a Fokker-Planck equation leading to the expression for the most probable amplitude of the critical mode. From this universal expression, the shape of the bifurcation, its location and its evolution with the noise level are completely defined. Experimental results obtained for a 1D transverse Kerr-like slice subjected to optical feedback are in excellent agreement.<br />Comment: 5 pages, 5 figures

Details

ISSN :
15393755, 24700045, and 24700053
Volume :
77
Issue :
2 Pt 2
Database :
OpenAIRE
Journal :
Physical review. E, Statistical, nonlinear, and soft matter physics
Accession number :
edsair.doi.dedup.....b4bb3efcdb1986b24971b2fd0d4de0f0
Full Text :
https://doi.org/10.1103/PhysRevE.77.026218⟩