Back to Search Start Over

Identification of lung cancer histology-specific variants applying Bayesian framework variant prioritization approaches within the TRICL and ILCCO consortia

Authors :
Keitaro Matsuo
Neil E. Caporaso
John R. Gosney
Juncheng Dai
Maiken Elvestad Gabrielsen
Margaret R. Spitz
Frank Skorpen
Tõnu Vooder
Neonila Szeszenia-Dabrowska
Paul Brennan
Brian E. Henderson
Shelley S. Tworoger
Vladimir Bencko
Xuchen Zong
Younghun Han
Olaide Y. Raji
Yufei Wang
Andres Metspalu
Hidemi Ito
Irene Orlow
Michael W. Marcus
Eleonora Fabianova
Chu Chen
James McKay
Ping Yang
Gary E. Goodman
Hans E. Krokan
Demetrius Albanes
Timothy Eisen
Geoffrey Liu
Ying Chen
Triantafillos Liloglou
Jolanta Lissowska
Lynne R. Wilkens
Mari Nelis
Mark Lathrop
John K. Field
Fumihiko Matsuda
Di Zhang
Yongyue Wei
Dana Mates
Peter Rudnai
Yonathan Brhane
Jun She
Victoria L. Stevens
Inger Njølstad
Hongbing Shen
Darren R. Brenner
Maria Teresa Landi
Susan M. Gapstur
Li Su
Michael P.A. Davies
David Zaridze
Loic Le Marchand
John R. McLaughlin
Dong Xie
Paolo Boffetta
Rayjean J. Hung
Peter Broderick
Albert Rosenberger
Hendrik Dienemann
Lenka Foretova
Thomas Muley
Christopher I. Amos
Vladimi Janout
David C. Christiani
Joachim Heinrich
Yafang Li
Lars J. Vatten
Mattias Johansson
Richard S. Houlston
Xifeng Wu
Kristjan Välk
Wei V. Chen
Heike Bickeböller
Angela Risch
Maria Timofeeva
Brenner, D.R.
Amos, C.I.
Brhane, Y.
Timofeeva, M.N.
Caporaso, N.
Wang, Y.
Christiani, D.C.
Bickeböller, H.
Yang, P.
Albanes, D.
Stevens, V.L.
Gapstur, S.
McKay, J.
Boffetta, P.
Zaridze, D.
Szeszenia-Dabrowska, N.
Lissowska, J.
Rudnai, P.
Fabianova, E.
Mates, D.
Bencko, V.
Foretova, L.
Janout, V.
Krokan, H.E.
Skorpen, F.
Gabrielsen, M.E.
Vatten, L.
Njølstad, I.
Chen, C.
Goodman, G.
Lathrop, M.
Vooder, T.
Välk, K.
Nelis, M.
Metspalu, A.
Broderick, P.
Eisen, T.
Wu, X.
Zhang, D.
Chen, W.
Spitz, M.R.
Wei, Y.
Su, L.
Xie, D.
She, J.
Matsuo, K.
Matsuda, F.
Ito, H.
Risch, A.
Heinrich, J.
Rosenberger, A.
Muley, T.
Dienemann, H.
Field, J.K.
Raji, O.
Chen, Y.
Gosney, J.
Liloglou, T.
Davies, M.P.A.
Marcus, M.
McLaughlin, J.
Orlow, I.
Han, Y.
Li, Y.
Zong, X.
Johansson, M.
Liu, G.
Tworoger, S.S.
Le Marchand, L.
Henderson, B.E.
Wilkens, L.R.
Dai, J.
Shen, H.
Houlston, R.S.
Landi, M.T.
Brennan, P.
Hung, R.J.
Source :
Carcinogenesis 36, 1314-1326 (2015), Carcinogenesis
Publication Year :
2015

Abstract

Large-scale genome-wide association studies (GWAS) have likely uncovered all common variants at the GWAS significance level. Additional variants within the suggestive range (0.0001> P > 5×10(-8)) are, however, still of interest for identifying causal associations. This analysis aimed to apply novel variant prioritization approaches to identify additional lung cancer variants that may not reach the GWAS level. Effects were combined across studies with a total of 33456 controls and 6756 adenocarcinoma (AC; 13 studies), 5061 squamous cell carcinoma (SCC; 12 studies) and 2216 small cell lung cancer cases (9 studies). Based on prior information such as variant physical properties and functional significance, we applied stratified false discovery rates, hierarchical modeling and Bayesian false discovery probabilities for variant prioritization. We conducted a fine mapping analysis as validation of our methods by examining top-ranking novel variants in six independent populations with a total of 3128 cases and 2966 controls. Three novel loci in the suggestive range were identified based on our Bayesian framework analyses: KCNIP4 at 4p15.2 (rs6448050, P = 4.6×10(-7)) and MTMR2 at 11q21 (rs10501831, P = 3.1×10(-6)) with SCC, as well as GAREM at 18q12.1 (rs11662168, P = 3.4×10(-7)) with AC. Use of our prioritization methods validated two of the top three loci associated with SCC (P = 1.05×10(-4) for KCNIP4, represented by rs9799795) and AC (P = 2.16×10(-4) for GAREM, represented by rs3786309) in the independent fine mapping populations. This study highlights the utility of using prior functional data for sequence variants in prioritization analyses to search for robust signals in the suggestive range.

Details

ISSN :
14602180
Volume :
36
Issue :
11
Database :
OpenAIRE
Journal :
Carcinogenesis
Accession number :
edsair.doi.dedup.....b4c0421e20814f509a60fd37de3e86ac