Back to Search Start Over

Identification of candidate repurposable drugs to combat COVID-19 using a signature-based approach

Authors :
Hunter M. Eby
Rawan Alnafisah
James Reigle
Alexander William Thorman
Behrouz Shamsaei
Nicholas D. Henkel
Xiaolu Zhang
Xiaojun Wu
Sophie Asah
Justin F. Creeden
Jarek Meller
Ali S Imami
R. Travis Taylor
Sinead M. O’Donovan
Robert E. McCullumsmith
Source :
Scientific Reports, Vol 11, Iss 1, Pp 1-12 (2021), Scientific Reports
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

The COVID-19 pandemic caused by the novel SARS-CoV-2 is more contagious than other coronaviruses and has higher rates of mortality than influenza. Identification of effective therapeutics is a crucial tool to treat those infected with SARS-CoV-2 and limit the spread of this novel disease globally. We deployed a bioinformatics workflow to identify candidate drugs for the treatment of COVID-19. Using an “omics” repository, the Library of Integrated Network-Based Cellular Signatures (LINCS), we simultaneously probed transcriptomic signatures of putative COVID-19 drugs and publicly available SARS-CoV-2 infected cell lines to identify novel therapeutics. We identified a shortlist of 20 candidate drugs: 8 are already under trial for the treatment of COVID-19, the remaining 12 have antiviral properties and 6 have antiviral efficacy against coronaviruses specifically, in vitro. All candidate drugs are either FDA approved or are under investigation. Our candidate drug findings are discordant with (i.e., reverse) SARS-CoV-2 transcriptome signatures generated in vitro, and a subset are also identified in transcriptome signatures generated from COVID-19 patient samples, like the MEK inhibitor selumetinib. Overall, our findings provide additional support for drugs that are already being explored as therapeutic agents for the treatment of COVID-19 and identify promising novel targets that are worthy of further investigation.

Details

Language :
English
ISSN :
20452322
Volume :
11
Issue :
1
Database :
OpenAIRE
Journal :
Scientific Reports
Accession number :
edsair.doi.dedup.....b4f696d2818b7b1928d9a66739c247c4