Back to Search
Start Over
Akt switches TopBP1 function from checkpoint activation to transcriptional regulation through phosphoserine binding-mediated oligomerization
- Source :
- Molecular and cellular biology. 33(23)
- Publication Year :
- 2013
-
Abstract
- Our previous study showed that Akt phosphorylates TopBP1 at the Ser-1159 residue and induces its oligomerization. Oligomerization is required for TopBP1 to bind and repress E2F1 activity. However, the mechanism through which phosphorylation of TopBP1 by Akt leads to its oligomerization remains to be determined. Here, we demonstrate that binding between the phosphorylated Ser-1159 (pS1159) residue and the 7th and 8th BRCT domains of TopBP1 mediates TopBP1 oligomerization. Mutations within the 7th and 8th BRCT domains of TopBP1 that block binding to a pS1159-containing peptide block TopBP1 oligomerization and its ability to bind and repress E2F1 activities. The Akt-induced TopBP1 oligomerization is also directly demonstrated in vitro by size exclusion chromatography. Importantly, oligomerization perturbs the checkpoint-activating function of TopBP1 by preventing its recruitment to chromatin and ATR binding upon replicative stress. Hyperactivation of Akt inhibits Chk1 phosphorylation after hydroxyurea treatment, and this effect is dependent on TopBP1 phosphorylation at Ser-1159. Thus, Akt can switch the TopBP1 function from checkpoint activation to transcriptional regulation by regulating its quaternary structure. This pathway of regulation is clinically significant, since treatment of a specific Akt inhibitor in PTEN-mutated cancer cells inhibits TopBP1 oligomerization and causes its function to revert from promoting survival to checkpoint activation.
- Subjects :
- Cell cycle checkpoint
Phosphoserine binding
Transcription, Genetic
Proto-Oncogene Proteins c-akt
Plasma protein binding
Biology
Molecular Dynamics Simulation
Stress, Physiological
Cell Line, Tumor
Transcriptional regulation
Serine
Humans
Hydroxyurea
Protein Interaction Domains and Motifs
Phosphorylation
Molecular Biology
Protein kinase B
Nuclear Proteins
Cell Biology
Cell Cycle Checkpoints
Articles
Chromatin
Cell biology
DNA-Binding Proteins
HEK293 Cells
Biochemistry
Amino Acid Substitution
Gene Expression Regulation
Protein Multimerization
Carrier Proteins
Heterocyclic Compounds, 3-Ring
Protein Processing, Post-Translational
E2F1 Transcription Factor
Protein Binding
Subjects
Details
- ISSN :
- 10985549
- Volume :
- 33
- Issue :
- 23
- Database :
- OpenAIRE
- Journal :
- Molecular and cellular biology
- Accession number :
- edsair.doi.dedup.....b547b3ff839a868209d80b1e039b0975