Back to Search Start Over

Holomorphic Functions and polynomial ideals on Banach spaces

Authors :
Santiago Muro
Daniel Carando
Verónica Dimant
Source :
CONICET Digital (CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, instacron:CONICET
Publication Year :
2009
Publisher :
arXiv, 2009.

Abstract

Given $\u$ a multiplicative sequence of polynomial ideals, we consider the associated algebra of holomorphic functions of bounded type, $H_{b\u}(E)$. We prove that, under very natural conditions verified by many usual classes of polynomials, the spectrum $M_{b\u}(E)$ of this algebra "behaves" like the classical case of $M_{b}(E)$ (the spectrum of $H_b(E)$, the algebra of bounded type holomorphic functions). More precisely, we prove that $M_{b\u}(E)$ can be endowed with a structure of Riemann domain over $E"$ and that the extension of each $f\in H_{b\u}(E)$ to the spectrum is an $\u$-holomorphic function of bounded type in each connected component. We also prove a Banach-Stone type theorem for these algebras.<br />Comment: 19 pages

Details

Database :
OpenAIRE
Journal :
CONICET Digital (CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, instacron:CONICET
Accession number :
edsair.doi.dedup.....b54ec4f5df22fed8d60bd105100bdfe6
Full Text :
https://doi.org/10.48550/arxiv.0910.3963