Back to Search
Start Over
Holomorphic Functions and polynomial ideals on Banach spaces
- Source :
- CONICET Digital (CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, instacron:CONICET
- Publication Year :
- 2009
- Publisher :
- arXiv, 2009.
-
Abstract
- Given $\u$ a multiplicative sequence of polynomial ideals, we consider the associated algebra of holomorphic functions of bounded type, $H_{b\u}(E)$. We prove that, under very natural conditions verified by many usual classes of polynomials, the spectrum $M_{b\u}(E)$ of this algebra "behaves" like the classical case of $M_{b}(E)$ (the spectrum of $H_b(E)$, the algebra of bounded type holomorphic functions). More precisely, we prove that $M_{b\u}(E)$ can be endowed with a structure of Riemann domain over $E"$ and that the extension of each $f\in H_{b\u}(E)$ to the spectrum is an $\u$-holomorphic function of bounded type in each connected component. We also prove a Banach-Stone type theorem for these algebras.<br />Comment: 19 pages
- Subjects :
- HOLOMORPHIC FUNCTIONS
Polynomial
Pure mathematics
Mathematics - Complex Variables
Matemáticas
Applied Mathematics
General Mathematics
purl.org/becyt/ford/1.1 [https]
Banach space
Holomorphic function
RIEMANN DOMAINS OVER BANACH SPACES
Matemática Pura
Functional Analysis (math.FA)
purl.org/becyt/ford/1 [https]
Mathematics - Functional Analysis
POLYNOMIAL IDEALS
47H60, 46G20, 30H05, 46M05
FOS: Mathematics
Algebra over a field
Complex Variables (math.CV)
CIENCIAS NATURALES Y EXACTAS
Mathematics
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- CONICET Digital (CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, instacron:CONICET
- Accession number :
- edsair.doi.dedup.....b54ec4f5df22fed8d60bd105100bdfe6
- Full Text :
- https://doi.org/10.48550/arxiv.0910.3963