Back to Search Start Over

Nanogold morphologies with the same surface chemistry provoke a different innate immune response: An in-vitro and in-vivo study

Authors :
Muhammad Usman
Yasra Sarwar
Rashda Abbasi
Hafiz Muhammad Ishaq
Maryam Iftikhar
Irshad Hussain
Ruken Esra Demirdogen
Ayesha Ihsan
Source :
NanoImpact. 28:100419
Publication Year :
2022
Publisher :
Elsevier BV, 2022.

Abstract

Gold nanomaterials (GNMs) have unique optical properties with less antigenicity, and their physicochemical properties have strong relation with an immunological response at bio-interface including antigenicity. An interpretation of this correlation would significantly impact on the clinical and theranostic applications of GNMs. Herein, we studied the effect of GNMs morphology on the cytotoxicity (in-vitro), innate immune responses, hepatotoxicity, and nephrotoxicity (in-vivo studies) using gold nano-cups (GNCs), porous gold nanospheres (PGNSs) and solid gold nano particles (SGNPs) coated with the same ligand to ensure similar surface chemistry. The cytotoxicity was assessed via sulfo-rhodamine B (SRB) assay, and the cytotoxicity data showed that morphological features at nanoscale dimensions like surface roughness and hollowness etc. have a significant impact on cellular viability. The biochemical and histopathological study of liver and kidney tissues also showed that all GNMs did not show any toxicity even at high concentration (100 μL). The relative quantification of cytokine gene expression of TNF-α, IFN-γ, IL-4, 1L-6, and 1L-17 (against each morphology) was checked after in-vivo activation in mice. Among the different nanogold morphologies, PVP stabilized GNCs (PVP-GNCs) showed the highest release of pro-inflammatory cytokines, which might be due to their high surface energy and large surface area for exposure as compared to other nanogold morphologies studied. The pro-inflammatory cytokine release could be suppressed by coating with some anti-inflammatory polymer, i.e., inulin. The in-vitro results of pro-inflammatory (TNF-α, IL-1) cytokines also suggested that all GNMs may induce activation of macrophages and Th1 immune response. The in-vivo activation results showed a decrease in mRNA expression of the cytokines (TNF-α, IFN-γ, IL-4, 1L-6 and 1L-17). Based on these findings, we proposed that the shape and morphology of GNMs control their immune response at nano-bio interface, and it must be considered while designing their role for different biomedical applications like immuno-stimulation and bio-imaging.

Details

ISSN :
24520748
Volume :
28
Database :
OpenAIRE
Journal :
NanoImpact
Accession number :
edsair.doi.dedup.....b589f89eb9c16209a55ab5bd85b9571a
Full Text :
https://doi.org/10.1016/j.impact.2022.100419