Back to Search Start Over

Extremal metrics for the Q′-curvature in three dimensions

Authors :
Chin-Yu Hsiao
Jeffrey S. Case
Paul Yang
Source :
Comptes Rendus Mathematique. 354:407-410
Publication Year :
2016
Publisher :
Elsevier BV, 2016.

Abstract

We construct contact forms with constant $Q^\prime$-curvature on compact three-dimensional CR manifolds which admit a pseudo-Einstein contact form and satisfy some natural positivity conditions. These contact forms are obtained by minimizing the CR analogue of the $II$-functional from conformal geometry. Two crucial steps are to show that the $P^\prime$-operator can be regarded as an elliptic pseudodifferential operator and to compute the leading order terms of the asymptotic expansion of the Green's function for $\sqrt{P^\prime}$.<br />Comment: 36 pages

Details

ISSN :
1631073X
Volume :
354
Database :
OpenAIRE
Journal :
Comptes Rendus Mathematique
Accession number :
edsair.doi.dedup.....b5c71b7c229c61fb3035e8b19420eef2
Full Text :
https://doi.org/10.1016/j.crma.2015.12.012