Back to Search Start Over

Platonic Compounds of Cylinders

Authors :
Ogievetsky, Oleg
Shlosman, Senya
Centre de Physique Théorique - UMR 7332 (CPT)
Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
CPT - E2 Géométrie, Physique et Symétries
Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
Source :
Integrability, Quantization, and Geometry: II. Quantum Theories and Algebraic Geometry, Integrability, Quantization, and Geometry: II. Quantum Theories and Algebraic Geometry, 103.2, pp.447, 2021, Proceedings of Symposia in Pure Mathematics, 978-1-4704-5592-7, Integrability, Quantization, and Geometry: II. Quantum Theories and Algebraic Geometry, 103.2, 2021, Proceedings of Symposia in Pure Mathematics, 978-1-4704-5592-7. ⟨10.1090/pspum/103.2⟩
Publication Year :
2021
Publisher :
American Mathematical Society, 2021.

Abstract

In our previous papers we were studying various extremal configurations of congruent cylinders touching the unit sphere. Generalizing the octahedral configuration of six congruent cylinders touching the unit sphere, we exhibit configurations of congruent cylinders associated to pairs of dual Platonic bodies.

Details

ISBN :
978-1-4704-5592-7
ISSN :
2324707X and 00820717
ISBNs :
9781470455927
Database :
OpenAIRE
Journal :
Proceedings of Symposia in Pure Mathematics
Accession number :
edsair.doi.dedup.....b5ee7558e650f170f64c965580ccc2ed
Full Text :
https://doi.org/10.1090/pspum/103.2/01864