Back to Search Start Over

On the solution of Lambert's problem by regularization

Authors :
Roberto Flores
D. De La Torre
Elena Fantino
Universitat Politècnica de Catalunya. Departament d'Enginyeria de Projectes i de la Construcció
Universitat Politècnica de Catalunya. Departament de Projectes Arquitectònics
Universitat Politècnica de Catalunya. CTE-CRAE - Grup de Recerca en Ciències i Tecnologies de l'Espai
Source :
Recercat. Dipósit de la Recerca de Catalunya, instname, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC)
Publication Year :
2018
Publisher :
Elsevier BV, 2018.

Abstract

Lambert's problem is the two-point boundary-value problem resulting from a two-body orbital transfer between two position vectors in a given time. It lies at the very heart of several fundamental astrodynamics and space engineering problems and, as such, it has attracted the interest of scientists over centuries. In this work, we revisit the solution of Lambert's problem based on Levi-Civita regularization developed by Carles Simó in 1973. We offer an exhaustive derivation of the theory, including proofs of all the results and the formulae employed, and we extend the algorithm to deal with multi-revolution transfers. Then, after investigating a range of initial guess search techniques and testing different numerical methods to approximate the solution, we propose a procedure in which the initial guess is assigned very efficiently by querying a pre-defined interpolating table. Then, in order to achieve both speed and robustness, we combine Newton-Raphson with safety checks to avoid out of boundary deviations to approximate the solution. We validate the method through several tests and applications, and we assess its convergence and performance. The algorithm presents no singularities, converges in all realistic scenarios and its computational cost is comparable with state of the art algorithms.

Details

ISSN :
00945765
Volume :
153
Database :
OpenAIRE
Journal :
Acta Astronautica
Accession number :
edsair.doi.dedup.....b6618b8d5f64eb1ea6ff7c42bc7c8108
Full Text :
https://doi.org/10.1016/j.actaastro.2018.10.010