Back to Search Start Over

Coordination of EZH2 and SOX2 specifies human neural fate decision

Authors :
Yanqi Zhang
Qianyu Chen
Jiao Yao
Yongli Shan
Guangjin Pan
Liang Shi
Tianyu Wang
Jingyuan Zhang
Yanxing Wei
Yuan Zhao
Xiaofen Zhong
Cong Zhang
Source :
Cell Regeneration, Cell Regeneration, Vol 10, Iss 1, Pp 1-13 (2021)
Publication Year :
2021
Publisher :
Springer Singapore, 2021.

Abstract

Polycomb repressive complexes (PRCs) are essential in mouse gastrulation and specify neural ectoderm in human embryonic stem cells (hESCs), but the underlying molecular basis remains unclear. Here in this study, by employing an array of different approaches, such as gene knock-out, RNA-seq, ChIP-seq, et al., we uncover that EZH2, an important PRC factor, specifies the normal neural fate decision through repressing the competing meso/endoderm program. EZH2−/− hESCs show an aberrant re-activation of meso/endoderm genes during neural induction. At the molecular level, EZH2 represses meso/endoderm genes while SOX2 activates the neural genes to coordinately specify the normal neural fate. Moreover, EZH2 also supports the proliferation of human neural progenitor cells (NPCs) through repressing the aberrant expression of meso/endoderm program during culture. Together, our findings uncover the coordination of epigenetic regulators such as EZH2 and lineage factors like SOX2 in normal neural fate decision. Supplementary Information The online version contains supplementary material available at 10.1186/s13619-021-00092-6.

Details

Language :
English
ISSN :
20459769
Volume :
10
Database :
OpenAIRE
Journal :
Cell Regeneration
Accession number :
edsair.doi.dedup.....b79012f63e38cd7d2f266ee22374793d