Back to Search Start Over

Deciphering the microstructure of hippocampal subfields with in vivo DTI and NODDI: Applications to experimental multiple sclerosis

Authors :
Hikaru Fukutomi
Stéphane H. R. Oliet
Thomas Tourdias
Vincent Dousset
Aude Panatier
Nadège Dubourdieu
Julien Bourel
Vincent Planche
Gérard Raffard
Bassem Hiba
Amandine Crombé
Institut Bergonié [Bordeaux]
UNICANCER
Université de Bordeaux (UB)
Centre de résonance magnétique des systèmes biologiques (CRMSB)
Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)
Physiopathologie du système nerveux central - Institut François Magendie
Université Bordeaux Segalen - Bordeaux 2-IFR8-Institut National de la Santé et de la Recherche Médicale (INSERM)
Neurobiologie morphofonctionnelle
Université Bordeaux Segalen - Bordeaux 2-Institut François Magendie-IFR8-Institut National de la Santé et de la Recherche Médicale (INSERM)
Service de neurologie [Bordeaux]
CHU Bordeaux [Bordeaux]-Groupe hospitalier Pellegrin
Centre de Recherche et d'Application en Traitement de l'Image et du Signal (CREATIS)
Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École Supérieure Chimie Physique Électronique de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Résonance magnétique des systèmes biologiques (RMSB)
Université Bordeaux Segalen - Bordeaux 2-Centre National de la Recherche Scientifique (CNRS)
Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-École Supérieure Chimie Physique Électronique de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)
CHU Bordeaux [Bordeaux]
VIAUD, Karine
Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)
Université de Lyon-Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Source :
NeuroImage, NeuroImage, Elsevier, 2018, 172, pp.357-368. ⟨10.1016/j.neuroimage.2018.01.061⟩, NeuroImage, 2018, 172, pp.357-368. ⟨10.1016/j.neuroimage.2018.01.061⟩
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

The hippocampus contains distinct populations of neurons organized into separate anatomical subfields and layers with differential vulnerability to pathological mechanisms. The ability of in vivo neuroimaging to pinpoint regional vulnerability is especially important for better understanding of hippocampal pathology at the early stage of neurodegenerative disorders and for monitoring future therapeutic strategies. This is the case for instance in multiple sclerosis whose neurodegenerative component can affect the hippocampus from the early stage. We challenged the capacity of two models, i.e. the classical diffusion tensor imaging (DTI) model and the neurite orientation dispersion and density imaging (NODDI) model, to compute quantitative diffusion MRI that could capture microstructural alterations in the individual hippocampal layers of experimental-autoimmune encephalomyelitis (EAE) mice, the animal model of multiple sclerosis. To achieve this, the hippocampal anatomy of a healthy mouse brain was first explored ex vivo with high resolution DTI and NODDI. Then, 18 EAE mice and 18 control mice were explored 20 days after immunization with in vivo diffusion MRI prior to sacrifice for the histological quantification of neurites and glial markers in each hippocampal layer. Fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD) maps were computed from the DTI model while the orientation dispersion index (ODI), the neurite density index (NDI) and the volume fraction of isotropic diffusivity (isoVF) maps were computed from the NODDI model. We first showed in control mice that color-coded FA and ODI maps can delineate three main hippocampal layers. The quantification of FA, AD, RD, MD, ODI, NDI and isoVF presented differences within these 3 layers, especially within the molecular layer of the dentate gyrus which displayed a specific signature based on a combination of AD (or MD), ODI and NDI. Then, the comparison between EAE and control mice showed a decrease of AD (p = 0.036) and of MD (p = 0.033) selectively within the molecular layer of EAE mice while NODDI indices did not present any difference between EAE and control mice in any layer. Histological analyses confirmed the differential vulnerability of the molecular layer of EAE mice that exhibited decreased dendritic length and decreased dendritic complexity together with activated microglia. Dendritic length and intersections within the molecular layer were independent contributors to the observed decrease of AD (R2 = 0.37 and R2 = 0.40, p

Details

Language :
English
ISSN :
10538119 and 10959572
Database :
OpenAIRE
Journal :
NeuroImage, NeuroImage, Elsevier, 2018, 172, pp.357-368. ⟨10.1016/j.neuroimage.2018.01.061⟩, NeuroImage, 2018, 172, pp.357-368. ⟨10.1016/j.neuroimage.2018.01.061⟩
Accession number :
edsair.doi.dedup.....b7952e91212295f378eec4cc35d4f6bd