Back to Search
Start Over
Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode
- Source :
- Proceedings of the National Academy of Sciences
- Publication Year :
- 2012
- Publisher :
- National Academy of Sciences, 2012.
-
Abstract
- The ultrabright femtosecond X-ray pulses provided by X-ray free-electron lasers open capabilities for studying the structure and dynamics of a wide variety of systems beyond what is possible with synchrotron sources. Recently, this “probe-before-destroy” approach has been demonstrated for atomic structure determination by serial X-ray diffraction of microcrystals. There has been the question whether a similar approach can be extended to probe the local electronic structure by X-ray spectroscopy. To address this, we have carried out femtosecond X-ray emission spectroscopy (XES) at the Linac Coherent Light Source using redox-active Mn complexes. XES probes the charge and spin states as well as the ligand environment, critical for understanding the functional role of redox-active metal sites. Kβ 1,3 XES spectra of Mn II and Mn 2 III,IV complexes at room temperature were collected using a wavelength dispersive spectrometer and femtosecond X-ray pulses with an individual dose of up to >100 MGy. The spectra were found in agreement with undamaged spectra collected at low dose using synchrotron radiation. Our results demonstrate that the intact electronic structure of redox active transition metal compounds in different oxidation states can be characterized with this shot-by-shot method. This opens the door for studying the chemical dynamics of metal catalytic sites by following reactions under functional conditions. The technique can be combined with X-ray diffraction to simultaneously obtain the geometric structure of the overall protein and the local chemistry of active metal sites and is expected to prove valuable for understanding the mechanism of important metalloproteins, such as photosystem II.
- Subjects :
- Multidisciplinary
Spin states
Synchrotron radiation
Nanotechnology
02 engineering and technology
Electronic structure
010402 general chemistry
021001 nanoscience & nanotechnology
Laser
01 natural sciences
Molecular physics
Synchrotron
0104 chemical sciences
law.invention
law
Femtosecond
Physical Sciences
Emission spectrum
0210 nano-technology
Spectroscopy
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Proceedings of the National Academy of Sciences
- Accession number :
- edsair.doi.dedup.....b7d6c66a11f33359bf6d92a0db57555e