Back to Search Start Over

Dual-gated single-molecule field-effect transistors beyond Moore’s law

Authors :
Linan Meng
Na Xin
Chen Hu
Hassan Al Sabea
Miao Zhang
Hongyu Jiang
Yiru Ji
Chuancheng Jia
Zhuang Yan
Qinghua Zhang
Lin Gu
Xiaoyan He
Pramila Selvanathan
Lucie Norel
Stéphane Rigaut
Hong Guo
Sheng Meng
Xuefeng Guo
Peking University [Beijing]
Chinese Academy of Sciences [Beijing] (CAS)
McGill University = Université McGill [Montréal, Canada]
Institut des Sciences Chimiques de Rennes (ISCR)
Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Nankai University (NKU)
We acknowledge primary financial support from the National Key R&D Program of China (2017YFA0204901, 2021YFA1200101, 2016YFA0300902, and 2019YFA0308500), the National Natural Science Foundation of China (22150013, 21727806, 21933001, 51991344, 91850120, and 11934003), the Natural Science Foundation of Beijing (Z181100004418003 and 2222009), 'Strategic Priority Research Program (B)' of Chinese Academy of Sciences (Grant No. XDB330301), the University of Rennes 1, the CNRS and the Agence Nationale de la Recherche (RuOxLux-ANR-12-BS07-0010-01), the Natural Sciences and Engineering Research Council (NSERC) of Canada, and the Fonds de recherche du Quebec-Nature et technologies (FRQNT) of the Province of Quebec (H.G.), Frontiers Science Center for New Organic Matter at Nankai University (63181206) and the Tencent Foundation through the XPLORER PRIZE. The authors also thank the High-Performance Computing Centre of McGill University, CalcuQuebec, and Compute Canada for computation facilities.
ANR-12-BS07-0010,RuOxLux,Modulation redox de la luminescence à l'aide de complexes organométalliques du ruthénium associés à une unité luminescente(2012)
Source :
Nature Communications, Nature Communications, 2022, 13 (1), pp.1410. ⟨10.1038/s41467-022-28999-x⟩
Publication Year :
2022
Publisher :
Springer Science and Business Media LLC, 2022.

Abstract

As conventional silicon-based transistors are fast approaching the physical limit, it is essential to seek alternative candidates, which should be compatible with or even replace microelectronics in the future. Here, we report a robust solid-state single-molecule field-effect transistor architecture using graphene source/drain electrodes and a metal back-gate electrode. The transistor is constructed by a single dinuclear ruthenium-diarylethene (Ru-DAE) complex, acting as the conducting channel, connecting covalently with nanogapped graphene electrodes, providing field-effect behaviors with a maximum on/off ratio exceeding three orders of magnitude. Use of ultrathin high-k metal oxides as the dielectric layers is key in successfully achieving such a high performance. Additionally, Ru-DAE preserves its intrinsic photoisomerisation property, which enables a reversible photoswitching function. Both experimental and theoretical results demonstrate these distinct dual-gated behaviors consistently at the single-molecule level, which helps to develop the different technology for creation of practical ultraminiaturised functional electrical circuits beyond Moore’s law.

Details

ISSN :
20411723
Volume :
13
Database :
OpenAIRE
Journal :
Nature Communications
Accession number :
edsair.doi.dedup.....b7e588070b95b8933b1aacec6757249d
Full Text :
https://doi.org/10.1038/s41467-022-28999-x