Back to Search Start Over

Electronic structure and electron-transport properties of three metal hexacyanoferrates

Authors :
Kevin Hurlbutt
Mauro Pasta
George Volonakis
Feliciano Giustino
University of Oxford [Oxford]
University of Texas at Austin [Austin]
Institut des Sciences Chimiques de Rennes (ISCR)
Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1)
Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)
University of Oxford
Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Source :
Chemistry of Materials, Chemistry of Materials, American Chemical Society, 2021, 33 (17), pp.7067-7074. ⟨10.1021/acs.chemmater.1c02183⟩, Chemistry of Materials, 2021, 33 (17), pp.7067-7074. ⟨10.1021/acs.chemmater.1c02183⟩
Publication Year :
2021
Publisher :
American Chemical Society, 2021.

Abstract

International audience; Metal hexacyanometallates, or Prussian blue analogs (PBAs), are active materials in important electrochemical technologies, including next-generation sodium- and potassium-ion batteries. They have tunable properties, including reduction potential, ionic conductivity, and color. However, little is known about their electronic conductivities. In this work, we use density-functional theory to model the electronic structure and to explore the likely electron-conduction mechanism in three promising cathodes (manganese, iron, and cobalt hexacyanoferrate) in each of three oxidation states. First, we demonstrate that hybrid functionals reliably reproduce experimentally observed spin configurations and geometric phase changes. We confirm these materials are semiconductors or insulators with band gaps ranging from 1.90 eV up to 4.94 eV. We further identify that for most of the compounds, the electronic band edges originate from carbon-coordinated iron orbitals, suggesting that doping at the carbon-coordinated site may strongly affect carrier conductivity. Finally, we calculate charge-carrier effective masses, which we find are very heavy. This study is an important foundation for making electronic conductivity a tunable PBA material property.

Details

Language :
English
ISSN :
08974756 and 15205002
Database :
OpenAIRE
Journal :
Chemistry of Materials, Chemistry of Materials, American Chemical Society, 2021, 33 (17), pp.7067-7074. ⟨10.1021/acs.chemmater.1c02183⟩, Chemistry of Materials, 2021, 33 (17), pp.7067-7074. ⟨10.1021/acs.chemmater.1c02183⟩
Accession number :
edsair.doi.dedup.....b8019416a24ce14f2246ec95674b4575
Full Text :
https://doi.org/10.1021/acs.chemmater.1c02183