Back to Search
Start Over
Genome-wide microarray analysis of tomato roots showed defined responses to iron deficiency
- Source :
- BMC Genomics, Vol 13, Iss 1, p 101 (2012), BMC Genomics
- Publication Year :
- 2012
- Publisher :
- Springer Science and Business Media LLC, 2012.
-
Abstract
- Background Plants react to iron deficiency stress adopting different kind of adaptive responses. Tomato, a Strategy I plant, improves iron uptake through acidification of rhizosphere, reduction of Fe3+ to Fe2+ and transport of Fe2+ into the cells. Large-scale transcriptional analyses of roots under iron deficiency are only available for a very limited number of plant species with particular emphasis for Arabidopsis thaliana. Regarding tomato, an interesting model species for Strategy I plants and an economically important crop, physiological responses to Fe-deficiency have been thoroughly described and molecular analyses have provided evidence for genes involved in iron uptake mechanisms and their regulation. However, no detailed transcriptome analysis has been described so far. Results A genome-wide transcriptional analysis, performed with a chip that allows to monitor the expression of more than 25,000 tomato transcripts, identified 97 differentially expressed transcripts by comparing roots of Fe-deficient and Fe-sufficient tomato plants. These transcripts are related to the physiological responses of tomato roots to the nutrient stress resulting in an improved iron uptake, including regulatory aspects, translocation, root morphological modification and adaptation in primary metabolic pathways, such as glycolysis and TCA cycle. Other genes play a role in flavonoid biosynthesis and hormonal metabolism. Conclusions The transcriptional characterization confirmed the presence of the previously described mechanisms to adapt to iron starvation in tomato, but also allowed to identify other genes potentially playing a role in this process, thus opening new research perspectives to improve the knowledge on the tomato root response to the nutrient deficiency.
- Subjects :
- Transcription, Genetic
lcsh:QH426-470
lcsh:Biotechnology
tomato
Biology
Plant Roots
Transcriptome
Methionine
Solanum lycopersicum
lcsh:TP248.13-248.65
Botany
Genetics
Homeostasis
Arabidopsis thaliana
Hormone metabolism
RNA, Messenger
Iron deficiency (plant disorder)
Oligonucleotide Array Sequence Analysis
Plant Proteins
Flavonoids
Fe deficiency
gene expression
Rhizosphere
Microarray analysis techniques
Gene Expression Profiling
fungi
food and beverages
Biological Transport
Genomics
Iron Deficiencies
biology.organism_classification
Adaptation, Physiological
Hormones
Cell biology
Gene expression profiling
Oxidative Stress
lcsh:Genetics
Metabolic pathway
Carbohydrate Metabolism
Research Article
Signal Transduction
Biotechnology
Subjects
Details
- ISSN :
- 14712164
- Volume :
- 13
- Database :
- OpenAIRE
- Journal :
- BMC Genomics
- Accession number :
- edsair.doi.dedup.....b83aa4b82789bced223ba78b1987ef25
- Full Text :
- https://doi.org/10.1186/1471-2164-13-101