Back to Search Start Over

Abnormal megakaryopoiesis and platelet function in cyclooxygenase-2-deficient mice

Authors :
Maurizio Pesce
Sara Gianellini
Silvia S. Barbieri
Babette B. Weksler
Kellie R. Machlus
Elena Tremoli
Patrizia Amadio
Franco O. Ranelletti
Eva Tarantino
Giovanna Petrucci
Joseph E. Italiano
Bianca Rocca
Publication Year :
2015
Publisher :
J.J. Sixma, B.N. Bouma and J.W.N. Akkerman, 2015.

Abstract

SummaryPrevious studies suggest that cyclooxygenase-2 (COX-2) might influence megakaryocyte (MK) maturation and platelet production in vitro. Using a gene deletion model, we analysed the effect of COX-2 deficiency on megakaryopoiesis and platelet function. COX-2-/- mice (10–12 weeks old) have hyper-responsive platelets as suggested by their enhanced aggregation, TXA2 biosynthesis, CD62P and CD41/CD61 expression, platelet-fibrinogen binding, and increased thromboembolic death after collagen/epinephrine injection compared to wild-type (WT). Moreover, increased platelet COX-1 expression and reticulated platelet fraction were observed in COX-2-/- mice while platelet count was similar to WT. MKs were significantly reduced in COX-2-/- bone marrows (BMs), with high nuclear/cytoplasmic ratios, low ploidy and poor expression of lineage markers of maturation (CD42d, CD49b). However, MKs were significantly increased in COX-2-/- spleens, with features of MK maturation markers which were not observed in MKs of WT spleens. Interestingly, the expression of COX-1, prostacyclin and PGE2 synthases and prostanoid pattern were modified in BMs and spleens of COX-2-/- mice. Moreover, COX-2 ablation reduced the percentage of CD49b+ cells, the platelet formation and the haematopoietic stem cells in bone marrow and increased their accumulation in the spleen. Splenectomy decreased peripheral platelet number, reverted their hyper-responsive phenotype and protected COX-2-/- mice from thromboembolism. Interestingly, fibrosis was observed in spleens of old COX-2-/- mice (28 weeks old). In conclusion, COX-2 deletion delays BM megakaryopoiesis promoting a compensatory splenic MK hyperplasia, with a release of hyper-responsive platelets and increased thrombogenicity in vivo. COX-2 seems to contribute to physiological MK maturation and pro-platelet formation.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....b8477e9ca6e49d8da3655013413d6737