Back to Search Start Over

Well-Defined Shell-Sheddable Core-Crosslinked Micelles with pH and Oxidation Dual-Response for On-Demand Drug Delivery

Authors :
Xinfeng Cheng
Qiyang Li
Xiaomeng Sun
Yuxin Ma
Huanping Xie
Weiguang Kong
Xianchao Du
Zhenghui Zhang
Dongfang Qiu
Yong Jin
Source :
Polymers; Volume 15; Issue 9; Pages: 1990
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Micellar-nanocarrier-based drug delivery systems possessing characteristics such as an excellent circulation stability, inhibited premature release and on-demand site-specific release are urgently needed for enhanced therapeutic efficacy. Therefore, a novel kind of shell-sheddable core-crosslinked polymeric micelles with pH and oxidation dual-triggered on-demand drug release behavior was facilely constructed. The multifunctional micelles were self-assembled from a carefully designed amphiphilic triblock PEGylated polyurethane (PEG-acetal-PUBr-acetal-PEG) employing an acid-labile acetal linker at the hydrophilic–hydrophobic interface and pendant reactive bromo-containing polyurethane (PU) as the hydrophobic block, followed by a post-crosslinking via oxidation-cleavable diselenide linkages. These well-defined micelles exhibited an enhanced structural stability against dilution, achieved through the incorporation of diselenide crosslinkers. As expected, they were found to possess dual pH- and oxidation-responsive dissociation behaviors when exposure to acid pH (~5.0) and 50 mM H2O2 conditions, as evidenced using dynamic light-scattering (DLS) and atomic force microscopy (AFM) analyses. An in vitro drug release investigation showed that the drug indomethacin (IND) could be efficiently encapsulated in the micelles, which demonstrated an inhibited premature release compared to the non-crosslinked ones. It is noteworthy that the resulting micelles could efficiently release entrapped drugs at a fast rate in response to either pH or oxidation stimuli. Moreover, the release could be significantly accelerated in the presence of both acid pH and oxidation conditions, relative to a single stimulus, owing to the synergetic degradation of micelles through pH-induced dePEGylation and oxidation-triggered decrosslinking processes. The proposed shell-sheddable core-crosslinked micelles with a pH and oxidation dual-response could be potential candidates as drug carriers for on-demand drug delivery.

Details

ISSN :
20734360
Volume :
15
Database :
OpenAIRE
Journal :
Polymers
Accession number :
edsair.doi.dedup.....b87e526986fbd566120e1bed48fcb6ce
Full Text :
https://doi.org/10.3390/polym15091990