Back to Search Start Over

On the Use of Neural Networks with Censored Time-to-Event Data

Authors :
Paul-Henry Cournède
Stefan Michiels
Elvire Roblin
Service de biostatistique et d'épidémiologie (SBE)
Direction de la recherche clinique [Gustave Roussy]
Institut Gustave Roussy (IGR)-Institut Gustave Roussy (IGR)
Mathématiques et Informatique pour la Complexité et les Systèmes (MICS)
CentraleSupélec-Université Paris-Saclay
Oncostat team [Villejuif]
Institut Gustave Roussy (IGR)
Source :
International Symposium on Mathematical and Computational Oncology-ISMCO 2020, International Symposium on Mathematical and Computational Oncology-ISMCO 2020, Oct 2020, Paris, France. pp.56-67, ⟨10.1007/978-3-030-64511-3_6⟩, Mathematical and Computational Oncology ISBN: 9783030645106, ISMCO
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

Motivation: The objective of this work is to confront artificial neural network models with time-to-event data, using specific ways to handle censored observations such as pseudo-observations and tailored loss functions.

Details

Language :
English
ISBN :
978-3-030-64510-6
ISBNs :
9783030645106
Database :
OpenAIRE
Journal :
International Symposium on Mathematical and Computational Oncology-ISMCO 2020, International Symposium on Mathematical and Computational Oncology-ISMCO 2020, Oct 2020, Paris, France. pp.56-67, ⟨10.1007/978-3-030-64511-3_6⟩, Mathematical and Computational Oncology ISBN: 9783030645106, ISMCO
Accession number :
edsair.doi.dedup.....b8b07c2bd531021ffb6e2584725e26ce
Full Text :
https://doi.org/10.1007/978-3-030-64511-3_6⟩