Back to Search
Start Over
Comparing TiO2 photocatalysis and UV-C radiation for inactivation and mutant formation of Salmonella typhimurium TA102
- Source :
- Environmetal science and pollution research international (Internet) 24 (2017): 1871–1879. doi:10.1007/s11356-016-7981-6, info:cnr-pdr/source/autori:Fiorentino A.; Rizzo L.; Guilloteau H.; Bellanger X.; Merlin C./titolo:Comparing TiO2 photocatalysis and UV-C radiation for inactivation and mutant formation of Salmonella typhimurium TA102/doi:10.1007%2Fs11356-016-7981-6/rivista:Environmetal science and pollution research international (Internet)/anno:2017/pagina_da:1871/pagina_a:1879/intervallo_pagine:1871–1879/volume:24, Environmental Science and Pollution Research, Environmental Science and Pollution Research, Springer Verlag, 2017, 24 (2), pp.1871-1879. ⟨10.1007/s11356-016-7981-6⟩
- Publication Year :
- 2017
- Publisher :
- Springer, Berlin , Germania, 2017.
-
Abstract
- International audience; Salmonellosis is one of the most common causes of foodborne bacterial human disease worldwide, and the emergence of multidrug-resistant (MDR) strains of Salmonella enterica serovar Typhimurium (S. typhimurium) was associated to the incidence of invasive salmonellosis. The objective of the present work was to investigate the effects of the TiO2 photocatalysis process in terms of both bacteria inactivation and the emergence of mutants, on S. typhimurium TA102 water suspensions. The TiO2 photocatalysis was compared with a conventional disinfection process such as UV-C radiation. In spite of the faster bacterial inactivation obtained in UV-C disinfection experiments (45, 15, and 10 min for total inactivation for initial cell density 109, 108, and 107 CFU mL-1, respectively), photocatalytic disinfection (60, 30, and 15 min) was more energy efficient because of a lower energy requirement (2-20 mWs cm-2) compared to the UV-C disinfection process (5-30 mWs cm-2). During the photocatalytic experiments, the mutation frequency increased up to 1648-fold compared to background level for a 108 CFU mL-1 initial bacterial density, and mutants were inactivated after 1-10-min treatment, depending on initial bacterial cell density. In UV-C disinfection experiments, the mutation frequency increased up to 2181-fold for a 108 CFU mL-1 initial bacterial cell density, and UV-C doses in the range of 0.5-4.8 mWs cm-2 were necessary to decrease mutation frequency. In conclusion, both disinfection processes were effective in the inactivation of S. typhimurium cells, and mutants released into the environment can be avoided if cells are effectively inactivated.
- Subjects :
- Salmonella typhimurium
Salmonella
Health, Toxicology and Mutagenesis
0208 environmental biotechnology
Mutant
02 engineering and technology
010501 environmental sciences
medicine.disease_cause
01 natural sciences
Bacterial cell structure
Ames test
Microbiology
Mutagenicity
medicine
Environmental Chemistry
Mutation frequency
Advanced oxidation processes
Water disinfection
0105 earth and related environmental sciences
biology
Mutagenesis
General Medicine
biology.organism_classification
Pollution
020801 environmental engineering
[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology
Salmonella enterica
Bacteria
Subjects
Details
- Language :
- English
- ISSN :
- 09441344 and 16147499
- Database :
- OpenAIRE
- Journal :
- Environmetal science and pollution research international (Internet) 24 (2017): 1871–1879. doi:10.1007/s11356-016-7981-6, info:cnr-pdr/source/autori:Fiorentino A.; Rizzo L.; Guilloteau H.; Bellanger X.; Merlin C./titolo:Comparing TiO2 photocatalysis and UV-C radiation for inactivation and mutant formation of Salmonella typhimurium TA102/doi:10.1007%2Fs11356-016-7981-6/rivista:Environmetal science and pollution research international (Internet)/anno:2017/pagina_da:1871/pagina_a:1879/intervallo_pagine:1871–1879/volume:24, Environmental Science and Pollution Research, Environmental Science and Pollution Research, Springer Verlag, 2017, 24 (2), pp.1871-1879. ⟨10.1007/s11356-016-7981-6⟩
- Accession number :
- edsair.doi.dedup.....b8c2c90c3ef80092947670a5ae3c46db
- Full Text :
- https://doi.org/10.1007/s11356-016-7981-6